

Schalltechnische Untersuchung

zum Bebauungs- und Grünordnungsplan Straßäcker-Ost-II in 93069 Köfering, Landkreis Regensburg

Auftraggeber: TEGULA Projekt GmbH Co.KG

Dietrich-Bonhoeffer-Str. 27

93055 Regensburg

Abteilung: Immissionsschutz

Auftragsnummer: 6061.1/2018-AS

Datum: 14.06.2018

Sachbearbeiter: Dipl. Geogr. (Univ.) Annette Schedding

Telefonnummer 09402 / 500461

E-Mail: <u>Annette.Schedding@ib-kottermair.de</u>

Berichtsumfang: 51 Seiten

Inhaltsverzeichnis

Zusammenfassung	4
Verkehrslärm - Straßäcker-Ost-II	4
Abschließende Empfehlung	5
Anforderungen / Empfehlungen für Satzung und Begründung	6
Aufgabenstellung	9
Ausgangssituation	9
Örtliche Gegebenheiten	9
Immissionspunkte	10
Bilddokumentation	11
Rechtliche Grundlagen der vorliegenden Untersuchung	12
Planerische Grundlagen der vorliegenden Untersuchung	12
Sonstige Grundlagen der vorliegenden Untersuchung	13
Anforderungen an den Schallschutz	. 15
Zum Verkehrslärm (Allgemein)	15
Verkehrslärm - DIN 18005-1	16
<u> </u>	
	18
_	
Anforderungen an den Schallschutz nach VDI 2719/08.87	21
_	
5	
Bundesstraße B 15	24
Verzeichnis der Anlagen	
Anlage 1: Verkehrslärm gesamt - Isophonendarstellung Tag / Nacht	. 25
	26
Anlage 1.2: Isophonendarstellung Tag/Nacht in 8m über Gelände (ca. III bei	
•	
Anlage 1.4: Rechenlauf-Information	32
	Anlage 1: Verkehrslärm gesamt - Isophonendarstellung Tag / Nacht Anlage 1.1: Isophonendarstellung Tag/Nacht in 2m über Gelände (Außenbereich)

8.	Anlage 2: Verkehrslärm mit Plangebäuden MI 1 - MI 4	34
8.1.	Anlage 2.1: Gebäudelärmkarte Verkehrslärm Höhe I - Tag/Nacht	35
8.2.	Anlage 2.2: Gebäudelärmkarte Verkehrslärm Höhe II - Tag/Nacht	36
8.3.	Anlage 2.3: Gebäudelärmkarte Verkehrslärm Höhe III - Tag/Nacht	37
8.4.	Anlage 2.4: Ergebnisausdruck getrennt für Schiene und Straße	38
8.5.	Anlage 2.5: Eingabedaten	43
8.6.	Anlage 2.6: Informationen zum Rechenlauf	
9.	Anlage 3: Angaben zum Schallschutz gem. DIN 4109/11.89	47
9.1.	Anlage 3.1: Tabellarischer Ausdruck Lärmpegelbereiche Verkehrslärm "gesamt"	
	gem. DIN 4109/11.89	47
9.2.	Anlage 3.2: Ergebnisgrafik Lärmpegelbereiche Verkehrslärm "gesamt" gem.	
	DIN 4109/11.89 (höchster Pegel)	51

1. Zusammenfassung

Die TEGULA Projekt GmbH Co.KG, Regensburg, Landkreis Regensburg, plant die Aufstellung des "Bebauungs- und Grünordnungsplan Straßäcker-Ost-II" im Süden des Gemeindesgebietes Köfering. Das Plangebiet soll als Mischgebiet (MI) nach § 6 BauNVO ausgewiesen werden.

Im Rahmen der vorliegenden Untersuchung waren gemäß der Besprechung /21/ im Landratsamt Regensburg folgende Aspekte schalltechnisch zu bearbeiten:

- 1. Ermittlung der Verkehrslärmimmissionen Straße aus der B 15 und
- 2. Ermittlung der Verkehrslärmimmissionen Schiene aus der Bahnstrecke 5500.

Für unser Ingenieurbüro, Messstelle nach § 29b BImSchG, bestand die Aufgabe, die schallschutztechnische Verträglichkeit des geplanten Vorhabens nach den einschlägigen rechtlichen und technischen Regelwerken zu ermitteln und zu bewerten.

Die Untersuchung kommt zu folgendem Ergebnis:

1.1. Verkehrslärm - Straßäcker-Ost-II

√ in der Nacht (22.00 Uhr - 6.00 Uhr)

Für Mischgebiete (MI) wurde im Beiblatt 1 der DIN 18005-1 ein Orientierungswert (ORW) von 60/50 dB(A) Tag/Nacht aus Verkehrslärm festgelegt. In Bezug zu den im Bebauungsund Grünordnungsplan Straßäcker-Ost-II dargestellten Gebäuden MI 1 bis MI 4 errechnet sich Folgendes. Die MI-ORW des Beiblatts 1 der DIN 18005 /2/ werden

im Bereich MI 1:

✓ am Tag (6.00 Uhr - 22.00 Uhr)	eingehalten,
√ in der Nacht (22.00 Uhr - 6.00 Uhr)	um bis zu 12 dB(A) überschritten;
im Bereich MI 2:	
✓ am Tag (6.00 Uhr - 22.00 Uhr)	um bis zu 6 dB(A) überschritten,
√ in der Nacht (22.00 Uhr - 6.00 Uhr)	um bis zu 10 dB(A) überschritten.
im Bereich MI 3:	
√ am Tag (6.00 Uhr - 22.00 Uhr)	eingehalten,
√ in der Nacht (22.00 Uhr - 6.00 Uhr)	um bis zu 9 dB(A) überschritten;
im Bereich MI 4:	
√ am Tag (6.00 Uhr - 22.00 Uhr)	um bis zu 5 dB(A) überschritten und

Im Erdgeschoss werden mit Berücksichtigung des aktiven Schallschutzes zur B 15 die MI-Orientierungswerte des Beiblatts 1 der DIN 18005-1 zur Tagzeit an allen Immissionspunkten eingehalten.

um bis zu 9 dB(A) überschritten.

Die Ergebnisse "Verkehrslärm gesamt" sind stockwerksbezogen für die Tag- und Nachtzeit in der **Anlage 2.1** Höhe EG/I, **Anlage 2.2** Höhe OG/II und **Anlage 2.3** Höhe DG/III dargestellt. In der **Anlage 2.4** ist der Ergebnisausdruck "Schiene" und "Straße" getrennt für alle Gebäude nach Stockwerken aufgeführt.

In Bezug zu den in der Rechtsprechung zur Bauleitplanung für die Abwägung des Erfordernisses von aktiven Schallschutzmaßnahmen herangezogenen Immissionsgrenzwerte (IGW) der Verkehrslärmschutzverordnung /4/ ergibt sich Folgendes:

- ✓ Die Immissionsgrenzwerte (IGW) von 64 dB(A) am Tag werden zur B 15 im 1.OG (II) und 2.OG (III) teilweise um 1-2 dB(A) überschritten.
- ✓ In der Nachtzeit errechnen sich Überschreitungen im B 15 nahen Plangebiet um bis zu 6 dB(A), im Bahnnäheren östlichen Teil um bis zu 8 dB(A).

In der **Anlage 2** sind die Fassadenseiten mit einer Einhaltung der Orientierungswerte des Beiblatts 1 der DIN 18005-1 für MI-Gebiete am Tag und/oder in der Nacht mit einem grünen Punkt dargestellt, mit einer Einhaltung der Immissionsgrenzwerte (IGW) gelb. Rosa Punkte zeigen Überschreitungen der IGW.

Zusätzlich zur geplanten aktiven Schallschutzmaßnahme zur B 15 sind bauliche und/oder passive Schallschutzmaßnahmen zum Schutz der geplanten Nutzungen vor Verkehrslärm in Bereichen mit einer Überschreitung der Orientierungswerte (ORW) der DIN 18005-1, Beiblatt 1, zu empfehlen, in Bereichen mit einer Überschreitung der Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV) zwingend erforderlich.

Entsprechend den Empfehlungen des Bayerischen Staatsministeriums /25/ sind beim Verkehrslärm aktive Schallschutzmaßnahmen im Geltungsbereich eines Bebauungsplanes zu prüfen.

- Zur B 15 wurde bereits ein aktiver Schallschutz zum Schutz des EG/Außenbereichs geplant.
- Im Osten des Plangebietes werden die Überschreitungen in der Nachtzeit v.a. durch die Bahnstrecke 5500 verursacht, die in Dammlage ca. 80 m bis 130 m östlich des Bebauungsplangebietes in Nord-Süd-Richtung verläuft. Aktive Schallschutzmaßnahme wären nur im Bahnbereich, d.h. außerhalb des Plangebietes sinnvoll und daher kaum realisierbar.

1.2. Abschließende Empfehlung

Gegen das geplante Vorhaben bestehen aus lärmschutztechnischer Sicht bei Beachtung der im Rahmen dieser Untersuchung erarbeiteten Voraussetzungen und den nachstehenden Vorschlägen für die Festsetzung und die Begründung keine Bedenken, sofern Folgendes beachtet wird:

- ➤ Errichtung eines aktiven Schallschutzes mit einer Höhe von mindestens 3,5m über Urgelände (s.a. Anlage 1.3) zur B 15.
- ➤ Bei der Planung ist in Bezug zum Verkehrslärm grundsätzlich auf eine schalltechnisch optimierte Grundrissgestaltung v.a. für in der Nachtzeit schützenswerte Räume zu achten. In Bereichen mit einer Überschreitung der MI-Immissionsgrenzwerte sind zusätzliche passive Schallschutzmaßnahmen erforderlich.

Bei der Aufstellung von Bebauungsplänen sind die allgemeinen Anforderungen an gesunde Wohn- und Arbeitsverhältnisse und die Belange des Umweltschutzes zu berücksichtigen. Schädliche Umwelteinwirkungen sollen bei der Planung nach Möglichkeit vermieden werden. In der Satzung zum Bebauungsplan sind Vorkehrungen zum Schutz vor schädlichen Umwelteinwirkungen in Form von abstrakten und konkreten Festsetzungen nach § 9 Abs. 1 Nr. 1 BauGB i.V.m. § 1 Abs. 4 Nr. 2 und Abs. 9 BauNVO bzw. § 9 Abs. 1 Nr. 24 BauGB zu treffen.

Die Gemeinde Köfering kann u.E. die Lärmsituation des Verkehrslärms bis zu den Immissionsgrenzwerten der 16. BImSchV /4/ abwägen, da die Verkehrsbelastung der innerstädtischen B 15 und der Bundesbahnstrecke 5500 bereits zum jetzigen Zeitpunkt auf einem Niveau ist, dass eine Abwägung der Immissionsschutzbelange zu den Immissionsgrenzwerten der 16. BImSchV gerechtfertigt erscheinen lässt.

Nachfolgend sind für den "Bebauungs- und Grünordnungsplan Straßäcker-Ost-II" Empfehlungen aufgezeigt, die nach Abwägung in die Satzung bzw. Begründung des Bebauungsplanes übernommen werden können.

1.3. Anforderungen / Empfehlungen für Satzung und Begründung

Hinweis an den Planer:

• Die Fassaden mit einer Überschreitung der IGW der 16. BImSchV für die Tag- und Nachtzeit sind entsprechend der Anlage 2 in den Bebauungsplan zu übernehmen.

Hinweise für den Plangeber (Stadt / Gemeinde):

- Die Anforderungen des Rechtsstaatsprinzips an die Verkündung von Normen stehen einer Verweisung auf nicht öffentlich zugängliche DIN-Vorschriften in den textlichen Festsetzungen eines Bebauungsplanes nicht von vornherein entgegen (BVerwG, Beschluss vom 29. Juli 2010 4 BN 21.10 Buchholz 406.11 §10 BauGB Nr. 46 Rn 9ff.). Verweist eine Festsetzung aber auf eine solche Vorschrift und ergibt sich erst aus dieser Vorschrift, unter welchen Voraussetzungen ein Vorhaben planungsrechtlich zulässig ist, muss der Plangeber sicherstellen, dass die Planbetroffenen sich auch vom Inhalt der DIN-Vorschrift verlässlich und in zumutbarer Weise Kenntnis verschaffen können. Den rechtstaatlichen Anforderungen genügt die Gemeinde, wenn sie die in Bezug genommene DIN-Vorschrift bei der Verwaltungsstelle, bei der auch der Bebauungsplan eingesehen werden kann, zur Einsicht bereithält und hierauf in der Bebauungsplanurkunde hinweist (BVerwG, Beschluss vom 29. Juli 2010 4 BN 21.10 a.a.O. Rn 13).
- Hinsichtlich des baulichen Schallschutzes obliegt es der Gemeinde die baulichen Anforderungen nach DIN 4109/11.89 (bauordnungsrechtlich eingeführt, normativ zurückgezogen) oder in der aktuellen Fassung DIN 4109:2018-01 (bauordnungsrechtlich noch nicht eingeführt, normativ eingeführt) festzusetzen. In der Anlage 3 ist eine Lärmpegelbereichsbestimmung nur zum Verkehrslärm nach der DIN 4109/11.89 eingefügt.

Textvorschläge für die Satzung:

Aktiver Schallschutz:

 An der Westseite des MI 2 und MI 4.3 ist eine aktive Schallschutzmaßnahme entsprechend der im Bebauungsplan dargestellten Lage mit einer Höhe von mindestens 3,5m über Gelände zu errichten.

Bauliche Schallschutzmaßnahmen:

In den Bereichen mit Überschreitungen der Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV) von 64 dB(A) tags und/oder 54 dB(A) nachts ist durch
eine entsprechende Grundrissorientierung sicherzustellen, dass vor den, für Lüftungszwecke vorgesehenen Fenstern von schutzbedürftigen Räumen im Sinne der DIN
4109/11.1989 "Schallschutz im Hochbau" (z.B. Wohn-, Schlaf- und Ruheräumen sowie
Kinderzimmern, Wohnküchen), die Immissionsgrenzwerte der 16. BImSchV von
64 dB(A) tags und 54 dB(A) nachts eingehalten sind.

Passive Schallschutzmaßnahmen:

Verfügen entsprechende, schutzbedürftige Räume über keine nach den vorgenannten Vorgaben zu orientierenden und für Lüftungszwecke geeigneten Fensterflächen, so sind an den entsprechenden Fassadenseiten Schallschutzfenster einzubauen und sicherzustellen, dass auch bei geschlossenen Fenstern an diesen schutzbedürftigen Räumen die erforderlichen Luftwechselraten eingehalten sind. Die vorgeschlagenen passiven Schallschutzmaßnahmen stehen im Einklang mit Artikel 45 der Bayerischen Bauordnung BayBO (in Kraft ab: 01.01.2016), wonach Aufenthaltsräume ausreichend belüftet werden müssen.

<u>In die Hinweise zur Satzung ist aufzunehmen:</u>

- Gemäß Art. 13 Abs. 2 BayBO müssen Gebäude einen ihrer Nutzung entsprechenden Schallschutz haben. Geräusche, die von ortsfesten Einrichtungen in baulichen Anlagen oder auf Baugrundstücken ausgehen, sind so zu dämmen, dass Gefahren oder unzumutbare Belästigungen nicht entstehen. Gemäß § 12 BauVorlV müssen die Berechnungen den nach bauordnungsrechtlichen Vorschriften geforderten Schall- und Erschütterungsschutz nachweisen.
- Die in den Festsetzungen des Bebauungsplanes genannten DIN-Normen und weiteren Regelwerke werden zusammen mit diesem Bebauungsplan während der üblichen Öffnungszeiten bei der Gemeinde Köfering, Zimmer xx (zu empfehlen dort, wo der B-Plan zur Einsicht ausliegt) an Werktagen während der Geschäftszeiten eingesehen werden. Die betreffenden DIN-Vorschriften usw. sind auch archivmäßig hinterlegt beim Deutschen Patentamt.

In die Begründung zum Bebauungsplan sind für die Planung /11/-/12/ folgende Hinweise aufzunehmen:

- Nach § 1 Abs. 6 BauGB sind bei Aufstellung und Änderung von Bebauungsplänen insbesondere die Anforderungen an gesunde Wohn- und Arbeitsverhältnisse zu berücksichtigen.
- Für den vorliegenden Bebauungsplan Straßäcker-Ost-II wurde die schalltechnische Untersuchung 6061.1/2018-AS der Ingenieurbüro Kottermair GmbH vom 14.06.2018 angefertigt, um die Verkehrslärmimmissionen an den relevanten Immissionsorten zu quantifizieren und beurteilen zu können, ob die Anforderungen des § 50 BImSchG hinsichtlich des Schallschutzes erfüllt sind. Zur Beurteilung können die Orientierungswerte des Beiblattes 1 der DIN 18005-1 "Schallschutz im Städtebau" sowie die Immissionsgrenzwerte der Verkehrslärmschutzverordnung herangezogen werden. Die Definition der schützenswerten Bebauung richtet sich nach der Konkretisierung im Beiblatt 1 zur DIN 18005-1 "Schallschutz im Städtebau".
- Im Plangebiet wirken durch die Bundesstraße B 15 und die Bahnstrecke 5500 Geräuschimmissionen ein, die dazu führen, dass auch mit aktivem Schallschutz zur B 15 im Bebauungsplangebiet Überschreitungen der Orientierungswerte des Beiblatts 1 der DIN 18005-1 und der Immissionsgrenzwerte der Verkehrslärmschutzverordnung 16. BIm-SchV in der Tag- und Nachtzeit vorliegen. Diese Überschreitungen werden durch bauliche und / oder passive Schallschutzmaßnahmen ggf. mit einer kontrollierten Wohnraumlüftung kompensiert.

Hinweise an die Gemeinde Köfering und den Planer zum weiteren Verlauf des Bebauungsplanverfahrens:

Die Gemeinde sollte prüfen, ob das Ortsschild weiter nach Süden z.B. bis zur Regensburger Straße verlegt werden kann.

Das geplante Vorhaben ist entsprechend den, der Untersuchung 6061.1/2018-AS der Ingenieurbüro Kottermair GmbH zugrunde liegenden Planunterlagen /11/-/12/ und den in Kapitel 6.2 beschrieben Berechnungsdaten auszuführen. Wird davon abgewichen, ist erforderlichenfalls ein Nachweis über die Gleichwertigkeit anderer Planungen zu erbringen.

Altomünster, 14.06.2018

Andreas Kottermair Beratender Ingenieur Annette Schedding
Dipl. Geogr. (Univ.)

A. Johndoling

2. Aufgabenstellung

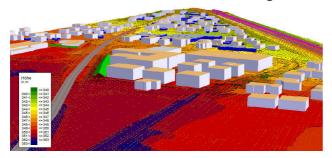
Die TEGULA Projekt GmbH Co.KG, Regensburg, Landkreis Regensburg, plant die Aufstellung des "Bebauungs- und Grünordnungsplan Straßäcker-Ost-II" im Süden des Gemeindesgebietes Köfering. Das Plangebiet soll als Mischgebiet (MI) nach § 6 BauNVO ausgewiesen werden. Aufgrund der Nähe zur Bundesstraße B 15 und zur Bahnstrecke 5500 "München - Regensburg" ist nach Besprechung /21/ eine schalltechnische Untersuchung in Bezug zum Verkehrslärm erforderlich.

Für unser Ingenieurbüro, Messstelle nach § 29b BImSchG, bestand die Aufgabe, die schallschutztechnische Verträglichkeit des geplanten Vorhabens nach den einschlägigen rechtlichen und technischen Regelwerken zu ermitteln und zu bewerten.

3. Ausgangssituation

3.1. Örtliche Gegebenheiten

Das Plangebiet liegt zwischen der B 15 im Westen und der Bahnhofstraße mit Wohnbebauung und der Bahnstrecke 5500 "München - Regensburg" im Osten. Westlich der B 15 liegt ein Edeka-Markt und Wohnbebauung (im Bau) des rechtskräftigen Bebauungsplanes "Straßäcker West" /15/. In unmittelbarer Nachbarschaft liegt auch noch eine Filiale der Firma Lidl, die im Geltungsbereich des rechtkräftigen Bebauungsplanes "Straßäcker Ost" /14/ liegt. Nördlich der Bahnhofstraße Straße grenzt Wohnbebauung (MI) und das Wohnhaus und ein Teil der Gärtnerei Ernst an. Das Plangebiet wird derzeit landwirtschaftlich genutzt.


Abbildung 1: Übersichtslageplan (ohne Maßstab, Quelle: /29/)

Für den Bebauungsplan "Straßäcker-Ost-II" liegt folgende Grafik vor:

Abbildung 2: B-Plan Straßäcker-Ost-II (Quelle: Ausschnitt aus /11/, ohne Maßstab)

Das für die Verkehrslärmberechnungen erforderliche 3-D-Geländemodell wurde aus den

digitalen Daten /13/ entwickelt. Das Bebauungsplangebiet liegt bei 345 m im Nordosten und 351 m im Südwesten. Das digitale Geländemodell mit Plangebäuden (Annahme: Bauweise III), aktivem Schallschutz nach Anlage 1.3 und grafisch hinterlegtem Entwurf zum Bebauungs- und Grünord-

nungsplan Straßäcker-Ost-II ist nebenstehend dargestellt.

3.2. Immissionspunkte

Für die Ermittlung der Verkehrslärmsituation "gesamt" wurde zunächst zur besseren Visualisierung eine Isophonenberechnung in 2 Geländehöhen durchgeführt. Die Berechnung erfolgt mittels Rasterlärmkarte. Die Ergebnisse "Isophonen Verkehrslärm" sind für die Tag-/Nachtzeit der **Anlage 1.1** (Höhe Außenbereich) bzw. **Anlage 1.2** (Höhe III) zu entnehmen.

Da derzeit noch keine Gebäudeplanung mit FOK-Höhen in Meter ü. NN vorliegt, wurden FOK-Höhen für die geplanten Gebäude über das DGM-Modul SoundPLAN /30/ ermittelt. Die Immissionsorthöhe wird in diesem Fall für das Plangebäuden MI 1 (Gewerbe) für das

Erdgeschoss auf Geländehöhe +4 m, jedes weitere Stockwerk +4 m festgelegt; für die Gebäude im MI 2 (Altenheim) für das Erdgeschoss auf Geländehöhe +3 m, jedes weitere Stockwerk +2,8 m; für die Gebäude im MI 3-4 (Wohngebäude) für das Erdgeschoss auf Geländehöhe +2,4 m, jedes weitere Stockwerk +2,8 m.

In der **Anlage 2.1-2.3** erfolgt eine grafische Darstellung "MI-Plangebäude mit Verkehrslärm gesamt" getrennt nach Stockwerken zur Tag- und Nachtzeit. Die Berechnungen getrennt nach Straßen- und Schienenverkehrslärm (Basis für DIN 4109) sind tabellarisch in der **Anlage 2.4** dargestellt.

Hinweis:

Der Pegel der Rasterlärmkarte kann vor einem Gebäude bis ca. 3 dB(A) höher liegen als eine vergleichbare Einzelpunktberechnung am Gebäude, da bei Einzelpunkten Richtlinienkonform die Reflexion der eigenen Fassade in aller Regel unterdrückt wird, bei der Rasterlärmkarte nicht.

3.3. Bilddokumentation

Bild 1: Blick über BV Grundstück BV von Südwesten von "Straßäcker West", Lidl, Wohnhaus Gärtnerei, Wohnbebauung östlich

(Stand: Januar 2018)

4. Quellen- und Grundlagenverzeichnis

Grundlagen der vorliegenden schalltechnischen Untersuchung waren:

4.1. Rechtliche Grundlagen der vorliegenden Untersuchung

- /1/ Verordnung über die bauliche Nutzung der Grundstücke (Baunutzungsverordnung BauNVO), Baunutzungsverordnung in der Fassung der Bekanntmachung vom 23. Januar 1990 (BGBl. I S. 132), die durch Artikel 3 des Gesetzes vom 22. April 1993 (BGBl. I S. 466) geändert worden ist", Stand: Neugefasst durch Bek. v. 23.1.1990 I 132; geändert durch Art. 3 G v. 22.4.1993 I 466
- /2/ DIN 18005: "Schallschutz im Städtebau" Teil 1: Grundlagen und Hinweise für die Planung, Stand: 2002-07 (Ersatz für DIN 18005-1:1987-05) mit Beiblatt 1 zur DIN 18005, Teil 1 vom Mai 1987
- /3/ Richtlinien für den Lärmschutz an Straßen, RLS-90, Ausgabe 1990, Stand: April 1990
- /4/ Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV) vom 12. Juni 1990 (BGBl. I S. 1036), die durch Artikel 1 der Verordnung vom 18. Dezember 2014 (BGBl. I S. 2269) geändert worden ist; mit Anlage 2 "Berechnung des Beurteilungspegels für Schienenwege" [Im Folgenden "Schall 03 neu"]
- /5/ Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissions-schutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA Lärm), vom 26. August 1998 (GMBl Nr. 26/1998 S. 503) zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5) in Kraft getreten am 9. Juni 2017 [mit Schreiben des BUM zur Korrektur Buchstaben Nr. 6.5 Satz 1 die Angabe "Buchstaben d bis f" durch die Angabe "Buchstaben e bis g" ersetzt werden müssen. In Nr. 7.4 die Angabe "Buchstaben c bis g"]
- /6/ VDI 2719 "Schalldämmung von Fenstern und deren Zusatzeinrichtungen", Stand: August 1987
- /7/ VDI 4100 "Schallschutz im Hochbau, Wohnungen, Beurteilung und Vorschläge für erhöhten Schallschutz", Stand: Oktober 2012
- /8/ DIN 4109-1:2018-01 "Schallschutz im Hochbau Teil 1: Mindestanforderungen" [in Bayern bisher nicht eingeführt]
- /9/ DIN 4109-2:2018-01 "Schallschutz im Hochbau Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen" [in Bayern bisher nicht eingeführt]
- /10/ DIN 4109/11.89 "Schallschutz im Hochbau" mit Änderung A1 vom Januar 2001 und Beiblatt 1 vom November 1989 [in Bayern als Technische Baubestimmung eingeführt]

4.2. Planerische Grundlagen der vorliegenden Untersuchung

/11/ E-Mail Firma GeoPlan, Osterhofen, vom 24.05.2018 mit Datei "1_BP-1000_i1.pdf"

- /12/ E-Mail Firma GeoPlan, Osterhofen, vom 25.05.2018 mit Datei "1_BP-1000 i1.dxf"
- /13/ Landesamt für Digitalisierung, Breitband und Vermessung, München, Geodatenonline: DGM2 Höhenrasterdaten im GK-System, Januar 2018
- /14/ Internet Landkreis Regensburg: Bebauungsplan "Straßäcker Ost", Rechtskraft 01.04.2004 mit 1. Änderung vom 01.05.2006
- /15/Internet Landkreis Regensburg: Bebauungsplan "Straßäcker West", Rechtskraft 01.02.2014 mit 1. Änderung vom 01.05.2015
- /16/ Internet Landkreis Regensburg: Flächennutzugsplan Köfering, Rechtskraft 02.03.1998, mit 2. Änderung vom 01.11.2003

4.3. Sonstige Grundlagen der vorliegenden Untersuchung

- /17/ Ortseinsicht im Januar und Juni 2018
- /18/ Besprechung mit Herrn Krell in Regenstauf am 23.06.2017 zum geplanten Bebauungsplan "Straßäcker Ost II" (Stand: 25.01.2017)
- /19/ Besprechung mit Herrn Mehrl im Landratsamt Regensburg am 01.09.2017
- /20/ Ingenieurbüro Kottermair GmbH: »Schalltechnische Untersuchung zum Vorhabenbezogenen Bebauungsplan "Straßäcker Ost II" in 93069 Köfering, Landkreis Regensburg«, Projekt-Nr. 6061.0/2017-AS vom 07.02.2018
- /21/ Besprechung mit Herrn Mehrl und den Beteiligten (B-Plan, Schallschutz) im Landratsamt Regensburg am 25.04.2018
- /22/ E-Mail Deutsche Bahn AG, Berlin, vom Juni 2018 mit Angaben zu Verkehrsdaten Prognose 2025 zur Bahnstrecke 5500 "München Regensburg" im Abschnitt Köfering [Mengengerüst Schall 03 neu]
- /23/ Oberste Baubehörde im Bayerischen Staatsministerium des Innern im Internet [DTV 2015 für B 15]
- /24/ Urteil VGH München 2 N 15.619 vom 15.03.2017 [Abwägungsgebot und Gebot der Konfliktbewältigung in der Bauleitplanung; Inhalt: im Bebauungsplanverfahren ist die Schall 03 alt anzuwenden]
- /25/ Dr. Parzefall: Lärmschutz in der Bauleitplanung, Schreiben IIB5-4641-002/10, Bayerisches Staatsministerium des Innern, für Bau und Verkehr, Juli 2014
- /26/ Urteil BVerwG 4 CN 2.06 vom 22.03.2007 [Abwägbarkeit aktiver passiver Schallschutz]
- /27/ Beschluss BVerwG 4 BN 21.10 vom 29.07.2010 [Verfügbarkeit von im Bebauungsplan in Bezug genommenen DIN-Vorschriften]
- /28/ Urteil VGH München vom 11.04.2011 9 N 10.2478 [Bekanntmachung von im Bebauungsplan in Bezug genommenen DIN-Vorschriften]
- /29/ Bayerisches Landesvermessungsamt: Topografische Karten und Luftbildansichten im Internet, Stand: Juni 2018, ergänzt durch Topografische Karte auf CD

/30/ Software SoundPLAN 7.4 der Firma Braunstein und Berndt GmbH, inkl. Bibliothek mit Angaben über verschiedene Geräuschemittenten und deren Schallleistungspegel, Stand: s. Anlage

5. Anforderungen an den Schallschutz

Die grundlegenden Anforderungen zur Berücksichtigung des Schallschutzes in der städtebaulichen Planung ergeben sich aus der DIN 18005, Teil 1 mit Beiblatt 1 (s. /2/), welche mit Bekanntmachung des Bayerischen Staatsministeriums des Inneren vom 03.08.1988 zur Anwendung empfohlen wurden.

5.1. Zum Verkehrslärm (Allgemein)

Gemäß §1 Abs. 6 Nr. 1 BauGB sind bei der Aufstellung von Bebauungsplänen die allgemeinen Anforderungen an gesunde Wohnverhältnisse zu berücksichtigen. Es handelt sich um einen (von mehreren) im Rahmen des Abwägungsgebots (§1 Abs. 7 BauGB) zu beachtenden Belang.

Für die Bauleitplanung sind (anders als z.B. für die Errichtung oder wesentliche Änderung eines Verkehrsweges nach der 16. BImSchV (Verkehrslärmschutzverordnung) keine konkreten Grenzwerte zum Schutz der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche normativ festgelegt. Verschiedene technische Regelwerke, insbesondere die DIN 18005 enthalten Orientierungswerte für die Zumutbarkeit von Lärmbelastungen. Diese gelten nach der ständigen Rechtsprechung der Verwaltungsgerichte grundsätzlich auch im Rahmen der Bauleitplanung. Da es sich allerdings gerade nicht um konkrete Grenzwerte handelt, ist die <u>Grenze</u> des Zumutbaren von den Trägern der Bauleitplanung (und den Gerichten) letztlich immer anhand einer umfassenden Würdigung aller Umstände des <u>Einzelfalls</u> und insbesondere der speziellen Schutzwürdigkeit des jeweiligen Baugebiets zu bestimmen. Die Orientierungswerte geben (nur) Anhaltspunkte für die Zumutbarkeit von Lärmbeeinträchtigungen im Regelfall.

Die Anforderungen an gesunde Wohnverhältnisse sind bei der Aufstellung eines Bebauungsplanes in der Regel gegeben, wenn die Orientierungswerte der DIN 18005 an schutzbedürftigen Gebäuden in Geltungsbereich des Bebauungsplanes eingehalten werden. Andererseits ist in der Rechtsprechung des Bundesverwaltungsgerichtes (BVerwG) anerkannt, dass die Überschreitung der Orientierungswerte nicht zwangsläufig bedeutet, dass die Anforderungen an gesunde Wohnverhältnisse nicht eingehalten werden. Vielmehr kann im Einzelfall auch eine Überschreitung dieser Orientierungswerte mit dem Abwägungsgebot vereinbar sein. Dies ist in der Rechtsprechung anerkannt für Überschreitungen um 5 dB(A) und sogar um bis zu 10 dB(A).

vgl. BVerwG, Urteil vom 22.03.2007 – 4CN 2/06, juris; BVerwG, Beschluß vom 18.12.1990 -4 N 6.88, juris

Voraussetzung ist aber, dass es hinreichend gewichtige Gründe gibt, schutzbedürftige Bebauung trotz der vorhandenen Lärmbelastung an dem konkreten Standort zu realisieren. Dazu gehört, dass Maßnahmen des aktiven Schallschutzes nicht möglich oder aus hinrei-

chend gewichtigen Gründen nicht vorzugswürdig sind. Darüber hinaus muss jedenfalls <u>im</u> <u>Innern</u> der Gebäude angemessener Lärmschutz gewährleistet werden.

Durch Festsetzungen im Bebauungsplan, gestützt auf § 9 Abs. 1 Nr. 24 BauGB, ist es möglich, durch bauliche Schallschutzmaßnahmen (lärmabgewandte Orientierung der schutzbedürftigen Räume) bzw. passive Schallschutzmaßnahmen (Verwendung schallschützender Außenbauteile) im Inneren von schutzbedürftigen Räumen einen angemessenen Schallschutz zu erhalten. Auch kommt unter Umständen eine geschlossene Riegelbebauung in Betracht, um die rückwärtigen Grundstücksflächen effektiv abzuschirmen. In jedem Fall ist aber zu beachten, dass in einem durch Verkehrslärm vorbelasteten Bereich ein erhöhter Rechtfertigungsbedarf besteht. Dabei gilt, dass die für die Planung streitenden Belange umso gewichtiger sein müssen, je stärker die Verkehrslärmbelastung im Plangebiet bzw. je größer die dadurch belastete Fläche ist. Eine solche Bauleitplanung kommt aber insbesondere dann- trotzdem- in Betracht, wenn keine oder keine auch nur annähernd ähnlich geeignete Fläche für die weitere Siedlungsentwicklung zur Verfügung steht.

5.2. Verkehrslärm - DIN 18005-1

Im Beiblatt 1 zur DIN 18005, Teil 1 /2/ sind schalltechnische Orientierungswerte für die städtebauliche Planung angegeben. Ihre Einhaltung oder Unterschreitung ist wünschenswert, um die mit der Eigenart des betreffenden schutzwürdigen Gebietes verbundene Erwartung auf angemessenen Schutz vor Lärmbelastungen zu erfüllen.

Für Verkehrslärm sind darin folgende Orientierungswerte angegeben:

<u> Tabelle 1: Orientierungswerte DIN 18005 Verkehr (Auszug)</u>
--

Gebietseinstufung	Orientierungswert					
	Tag	Nacht				
Allgemeines Wohngebiet (WA)	55 dB(A)	45 dB(A)				
Misch- und Dorfgebiet (MI/MD)	60 dB(A)	50 dB(A)				
Gewerbegebiet (GE)	65 dB(A)	55 dB(A)				

Dabei gilt die Zeit von 6.00 Uhr - 22.00 Uhr als Tagzeit und der Zeitraum von 22.00 Uhr - 6.00 Uhr als Nachtzeit.

Als wichtiges Indiz für das Vorliegen schädlicher Umwelteinwirkungen durch Verkehrslärmimmissionen werden in der Rechtsprechung im Rahmen der Bauleitplanung die Immissionsgrenzwerte der Verkehrslärmschutzverordnung (16. BImSchV, s. /4/) herangezogen. Anzuwenden ist die Verkehrslärmschutzverordnung jedoch nicht, da sie nur für den Neubau bzw. die wesentliche Änderung von Verkehrswegen relevant ist.

——————————————————————————————————————		 _				
Gebietseinstufung	Grenzwert					
	Tag	Nacht				
Allgemeines Wohngebiet (WA)	59 dB(A)	49 dB(A)				
Misch/Dorfgebiet (MI/MD)	64 dB(A)	54 dB(A)				
Gewerbegebiet (GE)	69 dB(A)	59 dB(A)				

Tabelle 2: Immissionsgrenzwerte der 16. BImSchV (Auszug)

Analog zur DIN 18005-1 /2/ gilt als Tagzeit der Zeitraum von 6.00 Uhr - 22.00 Uhr, als Nachtzeit der Zeitraum von 22.00 Uhr - 6.00 Uhr.

5.3. Schallschutzmaßnahmen - Allgemein

Durch Schallschutzmaßnahmen sollen möglichst deutliche Pegelminderungen an den Immissionsorten erreicht werden. Grundsätzlich werden aktive, bauliche und passive Schallschutzmaßnahmen unterschieden.

<u>Aktive</u> Schallschutzmaßnahmen wie z.B. ein Lärmschutzwall, eine Lärmschutzwand oder eine Kombination von beiden, schirmen Lärm möglichst quellnah ab und sind anderen Schallschutzmaßnahmen vorzuziehen. Falls aktive Schallschutzmaßnahmen nicht möglich oder nicht ausreichend sind, sind bauliche Schallschutzmaßnahmen vorzusehen.

Unter <u>baulichen</u> Schallschutzmaßnahmen ist z.B. eine Orientierung der Wohn- bzw. Schlafund Ruheräume zur Lärm abgewandten Seite zu verstehen (s. Punkt 3.16 in /8/ DIN 4109:2018-017 "Schützenswerte Räume" bzw. Anmerkung 1 in der DIN 4109/11.89 /10/).

In den Fällen, in denen trotz Realisierung von aktiven und baulichen Schallschutzmaßnahmen eine Überschreitung der Orientierungswerte des Beiblatts 1 der DIN 18005-1 /2/ verbleibt, sind passive Schallschutzmaßnahmen (z. B. Schallschutzfenster, verglaste Balkone, Wintergärten) vorzusehen.

<u>Passive</u> Schallschutzmaßnahmen sind meist nur in Verbindung mit mechanischen Zulufteinrichtungen wirksam, da nach dem Beiblatt 1 der DIN 18005-1 /2/ bei Beurteilungspegeln über 45 dB(A) selbst bei nur teilweise geöffnetem Fenster ein ungestörter Schlaf häufig nicht mehr möglich ist. Nach der VDI 2719 /6/ sind für "Räume, in denen aufgrund ihrer Nutzung (z.B. Schlafräume) eine Stoßlüftung nicht möglich ist" zusätzliche Lüftungseinrichtungen bei einem Außengeräuschpegel $L_m > 50 \ dB(A)$ erforderlich.

Um auch eine ausreichende Belüftung von Räumen sicherzustellen ist es beispielsweise sinnvoll, an lärmbelasteten Fassaden Wintergärten bzw. verglaste Balkone als passiven Schallschutz vorzusehen. Eine Nutzung solcher "Schallschleusen" als Aufenthaltsräume im Sinne der BayBO darf jedoch nicht möglich sein.

Bei der Auswahl von Fenstern/Fenstertüren ist nicht die Schallschutzklasse der Fenster ausschlaggebend, sondern das bewertete Bauschalldämmmaß R'_w des jeweiligen, am Bau funktionsfähig eingebauten Fensters unter Berücksichtigung von Vorhaltemaßen für den Prüfstand. Die Spektrum-Anpassungswerte C und Ctr sind zu beachten. Hiermit kann bereits in der Planung ganz gezielt auf die jeweilige Lärmsituation eingegangen werden.

5.4. Anforderungen an den Schallschutz nach DIN 4109/11.89

Die in Bayern bautechnisch eingeführte DIN 4109/11.89 "Schallschutz im Hochbau" /10/ gilt u.a. zum Schutz von Aufenthaltsräumen gegen Außenlärm wie Verkehrslärm und Lärm aus Gewerbe- und Industriebetrieben, die in der Regel baulich nicht mit den Aufenthaltsräumen verbunden sind. Schutzbedürftige Räume sind:

- Wohnräume, einschließlich Wohndielen,
- Schlafräume, einschließlich Übernachtungsräume in Beherbergungsstätten und Bettenräume in Krankenhäusern und Sanatorien,
- Unterrichtsräume in Schulen, Hochschulen und ähnlichen Einrichtungen,
- Büroräume (ausgenommen Großraumbüros), Praxisräume, Sitzungsräume und ähnliche Arbeitsräume.

Für die Festlegung der erforderlichen Luftschalldämmung von Außenbauteilen vor dem Außenlärm wurden in der DIN-Norm Lärmpegelbereiche festgelegt, denen der jeweils vorhandene oder zu erwartende "maßgebliche Außenlärmpegel" (= La) zuzuordnen ist.

Das erforderliche resultierende Bauschalldämm-Maß der Außenbauteile (= $R'_{w,res}$) ist unter Beachtung der Raumart, Raumnutzung, ggf. Korrekturwerten (Verhältnis der gesamten Außenfläche eines Raumes $S_{(W+F)}$ zur Grundfläche eines Raumes S_{G}) zu berechnen (s. Tab. 8-10 in DIN 4109/11.89 /10/).

Für die Bestimmung des "maßgeblichen Außenlärmpegels" bei **Verkehrslärm** (getrennt nach Straße, Schiene usw.) ist gemäß Kapitel 5.2.2. aus /10/ dem nach DIN 18005 <u>berechneten Beurteilungspegel</u> **L**_{r,Tag} 3 dB(A) hinzuzurechnen, das Ergebnis ganzzahlig zu runden und entsprechend Tabelle 8 in /10/ den Lärmpegelbereichen I bis VII zuzuordnen.

Das erforderliche resultierende Schalldämm-Maß $R'_{w,res}$ für "Aufenthaltsräume in Wohnungen, Übernachtungsräumen in Beherbergungsstätten u. ä." (s. Tabelle 8, Spalte 4 in DIN 4109/11.89) beträgt:

- im Lärmpegelbereich **I-II** $R'_{w,res} = 30 \text{ dB}$
- im Lärmpegelbereich III R'w,res = 35 dB
- im Lärmpegelbereich **IV** $R'_{w,res} = 40 \text{ dB}$
- im Lärmpegelbereich V $R'_{w,res} = 45 \text{ dB}$

Die Anforderungen gemäß Tabelle 8 DIN 4109/11.89 beziehen sich auch auf Dächer und Dachschrägen von ausgebauten Dachräumen, Außenbauteilen in geneigten Dächern wie z.B. Dachgauben, Dachfenster und Durchdringungen der Dachhaut durch Schornsteine, Lüfter o.ä.

Die Korrekturwerte für das Verhältnis der Außenbaufläche zur Grundfläche eines Raumes sowie das Verhältnis der Außenbauteilfläche gemäß Tabellen 9-10 DIN 4109/11.89 sind jeweils zu berücksichtigen. Dabei ist zu beachten, dass Fenster einschließlich Rollläden und Lüftungseinrichtungen, Türen oder Wandelemente in allen Fällen fugendicht in Umfassungsbauteile einzubauen sind, so dass keine Minderung des bewerteten Schalldämm-Maßes eintritt. Da die Wirksamkeit von Schallschutzfenstern nur im geschlossenen Zustand gewährleistet werden kann, ist eine Lüftungsanlage oder Lüftung über Schalldämmlüfter zu empfehlen. So können auch mögliche bauphysikalische Probleme ("Schimmelbildung") vermieden werden. Die Schalldämmlüfter müssen dabei mind. das Schalldämm-Maß der Fenster erreichen.

Hinweis:

In der Nähe von starkbefahrenen Bahnstrecken mit hohen Güterzuganteilen oder starkbefahrenen Straßen können die Grenzwerte der 16. BImSchV /4/ häufig nicht eingehalten werden.

Wenn die maßgeblichen Außenlärmpegel gem. der DIN 4109/11.89 bestimmt werden, ist das konkrete Maß der Überschreitung nicht maßgeblich, da aus höheren Außenlärmpegeln höhere Lärmpegelbereiche und damit höhere Bauschalldämm-Maße der Außenbauteile resultieren. Dadurch ist sichergestellt, dass in allen Gebäuden - unabhängig von der Entfernung zum Emittenten - gesunde Wohnverhältnisse entstehen. Wenn aber die Nachtpegel höher sind als die Tagpegel (wie meist in Bahnnähe) sollte das Maß der erforderlichen Schalldämmung für Schlafräume und Kinderzimmer um 2 Stufen erhöht werden. Alternativ kann auch die VDI 2719 für die Bestimmung der Schallschutzfensterklassen herangezogen werden, da dort sowohl die Gebietsnutzungen als auch die unterschiedlichen Nutzungen der Räume zur Tag- und Nachtzeit berücksichtigt werden.

5.5. Anforderungen an den Schallschutz nach DIN 4109-1:2018-01 und DIN 4109-2:2018-01

Die aktuelle - jedoch nicht eingeführte - DIN 4109-1:2018-01 "Schallschutz im Hochbau" /8/ gilt u.a. zum Schutz von schutzbedürftigen Räumen gegen Außenlärm wie Verkehrslärm und Lärm aus Gewerbe- und Industriebetrieben, die in der Regel baulich nicht mit den Aufenthaltsräumen verbunden sind. Schutzbedürftiger Räume sind hier:

- Wohnräume, einschließlich Wohndielen und Wohnküchen,
- Schlafräume, einschließlich Übernachtungsräume in Beherbergungsstätten,
- Bettenräume in Krankenhäusern und Sanatorien,

- Unterrichtsräume in Schulen, Hochschulen und ähnlichen Einrichtungen,
- Büroräume und
- Praxisräume, Sitzungsräume und ähnliche Arbeitsräume.

Für die Festlegung der erforderlichen Luftschalldämmung von Außenbauteilen sind zunächst die Außengeräuschpegel (La) zu berechnen. Rührt die Geräuschbelastung von mehreren Quellen her, so ist der resultierende Außenlärmpegel La,res aus den einzelnen maßgeblichen Außenlärmpegeln La,i gemäß nachstehender Gleichung zu ermitteln.

$$L_{\text{a,res}} = 10 \lg \sum_{i=1}^{n} (10^{0,1L_{\text{a},i}}) \text{ (dB)}$$

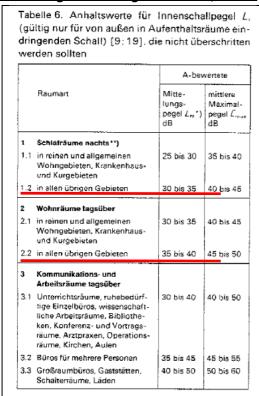
Die Addition von 3 dB(A) darf nur einmal erfolgen, d.h. auf den Summenpegel.

Für die Bestimmung des "maßgeblichen Außenlärmpegels" bei Verkehrslärm (Straßen und Schiene) sind gemäß Punkt 4.4.5.2 und 4.4.5.3 der DIN 4109-2:2018-01 (s. /9/) für den Tagzeitraum (6.00 Uhr - 22.00 Uhr) und für den Nachtzeitraum (22.00 Uhr - 6.00 Uhr) 3 dB(A) dem nach der 16. BImSchV berechneten Beurteilungspegel hinzuzurechnen. Beträgt die Differenz der Beurteilungspegel zwischen Tag und Nacht weniger als 10 dB(A), so ergibt sich der maßgebliche Außenlärmpegel aus einem 3 dB(A) erhöhten Nacht-Beurteilungspegel zum Schutz des Nachtschlafes sowie einem Zuschlag von 10 dB(A).

Für die Bestimmung des "maßgeblichen Außenlärmpegels" bei Gewerbe- und Industrieanlagen ist gemäß Punkt 4.4.5.6 der DIN 4109-2:2018-02 (s. /9/) 3 dB(A) dem nach TA Lärm, für die jeweilige Gebietskategorie, angegebenen Tag-Immissionsrichtwert hinzuzurechnen. Besteht im Einzelfall eine Überschreitung der Immissionsrichtwerte der TA Lärm, dann sollte der tatsächliche Beurteilungspegel bestimmt und zur Ermittlung des maßgeblichen Außenlärmpegels 3 dB(A) addiert werden. Beträgt die Differenz der Beurteilungspegel zwischen Tag und Nacht weniger als 10 dB(A), so ergibt sich der maßgebliche Außenlärmpegel aus einem 3 dB(A) erhöhten Nacht-Beurteilungspegel zum Schutz des Nachtschlafes sowie einem Zuschlag von 10 dB(A).

Hinweis:

Die DIN 4109-1:2018-01 und die DIN 4109-2:2018-01 sind in Bayern noch nicht eingeführt worden. In der Liste der "Technischen Baubestimmungen" wird noch die DIN 4109/11.89 mit Änderung A 1 und Beiblatt 1 als technische Regel in der Liste der "Technischen Baubestimmungen" geführt. Die DIN 4109-1/11.89 wurde zurückgezogen.


Nach bisheriger Rechtsprechung (nur zur DIN 4109/11.89) genügen die Mindestanforderungen der DIN 4109/11.89 mit Beiblatt 1 im Eigentumswohnbau jedoch nicht dem geschuldeten Schallschutz, da sie nicht dem Stand der Technik entsprächen, weshalb für die Schallschutzanforderungen auf die DIN 4109/11.89 mit Beiblatt 2 und die VDI 4100/10-2012 verwiesen wird.

Ergänzend sei noch die DEGA Empfehlung 103 "Schallschutz im Wohnungsbau" vom Januar 2018 genannt.

5.6. Anforderungen an den Schallschutz nach VDI 2719/08.87

Die VDI 2719/08.87 "Schalldämmung von Fenstern und deren Zusatzeinrichtungen" dient v.a. der Planung der durch Fenster erreichbaren Schalldämmung "Außen" – "Innen" und der Einteilung und Schallschutzklassen sowie deren Ausschreibung. Hierzu 2 maßgebliche Tabellen:

Abbildung 3: Auszug VDI 2719/08.87

Spalte	1	2	3
Zeile	Schall- schutz- klasse	bewertetes Schall- dämm-Maß A',, des am Bau funktionsfä- hig eingebauten Fensters, gemessen nach DIN 52210 Teil 5 in dB	erforderliches bewer- tetes Schalldämm- Maß R _w des im Prüf- stand (P-F) nach DIN 52210 Teil 2 eingebauten funk- tionsfähigen Fensters in dB
1	1	25 bis 29	≥ 27
2	2	30 bis 34	≥ 32
3	3	35 bis 39	≥ 37
4	4	40 bis 44	≥ 42
5	5	45 bis 49	≥ 47
6	6	≥50	≳ 62

Nach Punkt 10.2 der VDI 2719 /6/ sind bei einem Mittelungspegel über 50 dB(A) außen in der Nachtzeit die Schlafräume bzw. die zum Schlafen geeignete Räume mit zusätzlichen schallgedämmten Lüftungseinrichtungen zu versehen, wenn eine Raumbelüftung über ein Fenster an einer lärmunbelasteten Seite nicht möglich ist. Die gesamte Schalldämmung darf durch den Einbau geeigneter Zulufteinheiten nicht verschlechtert werden. Zur Lüftung von Räumen, die nicht zum Schlafen genutzt werden, kann ansonsten ein kurzzeitiges Öffnen der Fenster zugemutet werden (Stoßlüftung).

6. Beurteilung

6.1. Allgemeines

Für die Verkehrslärmuntersuchung sind die im Kapitel 6.2 aufgeführten Emittenten "Bahnstrecke 5500" und die "B 15" auf Basis der Angaben /22/-/23/ anzusetzen. Die Berechnungen "Schiene" wurden dabei gemäß Besprechung /21/ im Landratsamt Regensburg mit der "Schall 03 neu" durchgeführt.

6.1.1. Berechnungssoftware

Unter Verwendung des EDV-Programms SoundPLAN 7.4 /30/ wird für Berechnungen "Verkehr" ein digitales Geländemodell für die Schallausbreitung erzeugt (s. Kapitel 3.1). Die Schallausbreitungsberechnungen zur Bestimmung der Beurteilungspegel an den Immissionsorten erfolgt nach den Rechenregeln der DIN 18005-1 /2/, bzw. RLS-90 /3/ sowie der Schall 03 /4/.

6.1.2. Grundsätzliche Aussagen über die Mess- und Prognosegenauigkeit

Messunsicherheit

Die Messunsicherheit ist von der Güte der verwendeten Prüfmittel und insbesondere von der Durchführung vor Ort abhängig. Zur Minimierung von Fehlerquellen werden:

- ausschließlich Schallpegelmesser der Genauigkeitsklasse 1 nach DIN EN 60651, DIN EN 60804 und DIN 45657 mit einer Toleranz von ± 0,7 dB verwendet. Dies garantieren auch die entsprechenden Eichscheine.
 - Bei (Abnahme-) Messungen nach dem Bundesimmissionsschutzgesetz werden grundsätzlich nur geeichte Schallpegelmesser eingesetzt.
 - Mit Verweis auf DIN 45645-1, Ziffer 8 kann im Normalfall bei einem Vertrauensniveau von 0.8 mit einer Messunsicherheit bei Klasse 1 Geräten von \pm 1 dB gerechnet werden.
 - Die Pegelkonstanz der verwendeten Kalibratoren der Klasse 1 nach DIN EN 60942 kann mit \pm 0,1 dB angegeben werden.
- bei der Durchführung der Messungen vor Ort die geltenden vorgegebenen Standards (DIN-Normen, VDI etc.) eingehalten und insbesondere deren (Qualitäts-) Anforderungen eingehalten.

Die Gesamtmessunsicherheit liegt somit bei höchstens ± 1 dB.

Sofern geltende Standards wie z.B. die DIN EN ISO 3744 konkrete Verfahren zur Messunsicherheit vorgeben, werden diese angewandt.

Um den bestimmungsgemäßen Betrieb genauer zu verifizieren, werden im Vorfeld von schalltechnischen Messungen Genehmigungsbescheid(e) gesichtet und die Messplanung

mit Betreiber und Genehmigungsbehörde abgestimmt. Damit, und in Verbindung mit der entsprechenden langjährigen Erfahrung der Messstellenleitung, können fundiertes Vorwissen und eine gute Übersicht über den Anlagenbetrieb gewonnen werden. Ebenso werden vor Messbeginn Informationen über die wesentlichen Bedingungen der Messsituation durch eine Betriebsbegehung mit den Firmenverantwortlichen eingeholt.

Um Ungereimtheiten oder dem Vorwurf der Parteilichkeit zu begegnen, werden im Einzelfall auch ohne Kenntnis bzw. Information des Betreibers am Messtag stichprobenartig zusätzliche Messungen vorgenommen oder der Anlagenbetrieb über die eigentliche Messaufgabe hinaus beobachtet.

Prognoseunsicherheit

Die Genauigkeit ist abhängig von u. a. den zugrunde gelegten Eingangsdaten (Schallleistungspegel, Vermessungsamtsdaten etc.). Zur Minimierung von Fehlerquellen werden:

- digitale Flurkarten (DFK) sowie ein digitales Geländemodell (DGM) über die (Bayerische) Vermessungsverwaltung bezogen zumindest aber vom Planer in digitaler Form (dxf-Format) angefordert.
- softwarebasierte Prognosemodelle erstellt. Hierzu wird auf den SoundPLAN-Manager der Braunstein + Berndt GmbH, 71522 Backnang zurückgegriffen. Eine Konformitätserklärung des Softwareentwicklers nach DIN 45687:2006-05 Software-Erzeugnisse zur Berechnung der Geräuschimmissionen im Freien Qualitätsanforderungen und Prüfbestimmungen liegt vor.
- für die schalltechnischen Eingangsdaten Schallleistungspegel aus Literatur und Fachstudien und/oder Herstellerangaben und/oder eigenen Messungen herangezogen. Diese Daten sind hinreichend empirisch und/oder durch eine Vielzahl von Einzelereignissen verifiziert und/oder von renommierten Institutionen verfasst.

Für die Schallausbreitungsrechnung verweist die TA Lärm auf die Regelungen der DIN ISO 9613-2, die einem Verfahren der Genauigkeitsklasse 2 entspricht. In Tabelle 5 gibt die DIN ISO 9613-2 eine geschätzte Genauigkeit von höchstens \pm 3 dB an, was bei einem Vertrauensintervall von 95 % einer Standardabweichung von 1,5 dB entspricht.

Die Beurteilungspegel werden für den jeweils ungünstigsten Betriebszustand - Maximalauslastung, Voll- und Parallelbetrieb, maximale Einwirkzeit (24h) usw. - ermittelt. Eine gegebenenfalls Prognoseunsicherheit nach oben hin ist dadurch hinreichend kompensiert, so dass die Ergebnisse auf der sicheren Seite liegen.

6.2. Verkehrslärm

6.2.1. Bahnstrecke 5500 München - Regensburg

Die Bahn verläuft überwiegend in Dammlage ca. 80 m bis 150 m östlich des Plangebietes in Nord-Süd-Richtung. Um die Bahn-Verkehrslärmimmissionen beurteilen zu können, wurden folgende Daten aus /20/ zur Bahnstrecke 5500 im Bereich Köfering zugrunde gelegt.

Tabelle 3: Mengengerüst DB Schall 03 - Prognose 2025, Strecke 5500

Strecke 5500 Bereich Köfering km 125,6 v max = 140kmh

Prognose 202	25	Daten nach Schall03 gültig ab 01/2015													
Zugart-	Anzah	l Züge	v_max		Fahrzeugkategorien gem Schall03 im Zugverband										
				Fahrzeugkat		Fahrzeugkat		Fahrzeugkat		Fahrzeugkat		Fahrzeugkat			
Traktion	Tag	Nacht	km/h	egorie	Anzahl	egorie	Anzahl	egorie	Anzahl	egorie	Anzahl	egorie	Anzahl		
GZ-E	29			7-Z5_A4	1	10-Z5	24	10-Z2	6	10-Z18	6	10-Z15	1		
RV-ET	108	12	140	5-Z5_A10	2										
IC-E	2	2		7-Z5_A4	1	9-Z5	10								
IC-E	15	1	140	7-Z5_A4	1	9-Z5	12		,						
	154	43	Summe beide	r Richtungen											

Gemäß Kapitel 4.3 der "Schall 03 neu" ist im Bahnhofsbereich die zulässige Geschwindigkeit der freien Strecke, mindestens aber 70 km/h anzusetzen. Nach aktuellem Fahrplan halten nur Regionalzüge (RE, ag) im Bahnhof Köfering an. Für diese wird die Geschwindigkeit im beschriebenen Streckenabschnitt nach /4/ mit 70 km/h berücksichtigt.

Zu- und Abschläge zum Emissionspegel erfolgen im Programm /30/ selbst. Aus diesen Daten ergeben sich die in **Anlage 1.3** dargestellten Emissionspegel.

6.2.2. Bundesstraße B 15

Um die Straßenverkehrslärmemissionen der B 15 gemäß den Vorgaben der RLS-90 berechnen zu können, wurden folgende Verkehrszahlen aus /23/ zugrunde gelegt.

Tabelle 4: Verkehrsbelastung - DTV 2015

Verkehrsweg	DTV 2015 (Kfz in 24h)	Mt	Pt	Mn	Pn
Z.St. 7039 9117 Ri Pfakofen (L 2146) nach Köfering R 30 /L2329)	6.999	397	9,8 %	80	12,8 %

Legende:

Mt: nach /3/ die maßgebende mittlere stündliche Kfz-Verkehrsstärke in Kfz/h für den Tag (6-22 Uhr) Mn: nach /3/ die maßgebende mittlere stündliche Kfz-Verkehrsstärke in Kfz/h für die Nacht (22-6 Uhr)

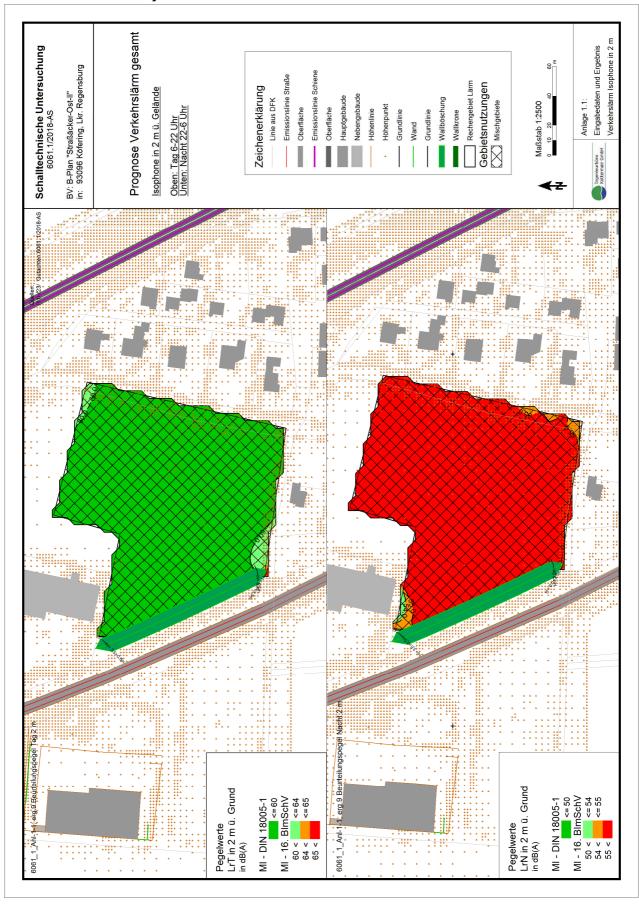
Pt: Maßgebender Lkw-Anteil in Prozent am stündlichen Kfz-Verkehr Mt

Pn: Maßgebender Lkw-Anteil in Prozent am stündlichen Kfz-Verkehr Mn

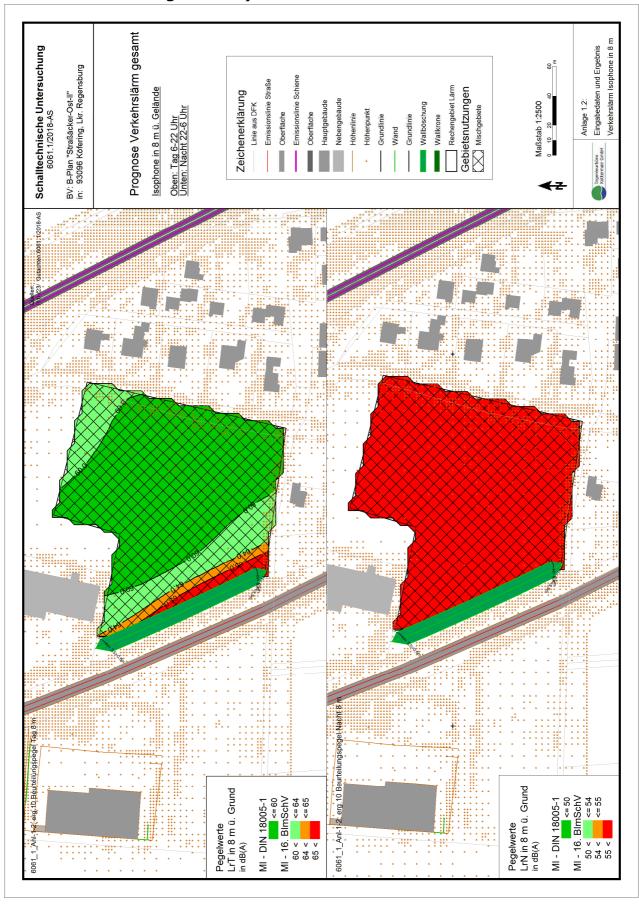
Für die Berechnungen Prognose 2030 wurde ein Prognosefaktor von 1,2 berücksichtigt.

Als Geschwindigkeit ist gemäß Ortseinsicht /17/ innerorts Tempo 50 und von Süden zum Ortsschild Köfering in Nähe Straßäcker West Tempo 80 für Pkw und Lkw anzusetzen. Zu- und Abschläge (Ampeln, Steigung, Straßenoberfläche, etc.) zum Emissionspegel erfolgen im Programm /30/ selbst. Die Eingabedaten der Verkehrslärmberechnung "Straße" sind der **Anlage 1.3** zu entnehmen.

7. Anlage 1: Verkehrslärm gesamt - Isophonendarstellung Tag / Nacht


Berechnungsdaten:

- Prognose Bahnstrecke 5500
- Prognose B 15


Beurteilung:

- Orientierungswerte 60/50 dB(A) für MI gem. DIN 18005 [ORW]
- Grenzwerte 64/54 dB(A) für MI gem. 16. BImSchV [IGW]

7.1. Anlage 1.1: Isophonendarstellung Tag/Nacht in 2m über Gelände (Außenbereich)

7.2. Anlage 1.2: Isophonendarstellung Tag/Nacht in 8m über Gelände (ca. III bei Wohngebäuden)

7.3. Anlage 1.3: Eingabedaten Verkehrslärm und aktiver Schallschutz

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Emissionsberechnung Straße: Isophone in 2m über Gelände (Außenbereich) - Verkehr gesamt 2025

Straße
Abschnittsname
VPkw Tag
VPkw Nacht
VLsw Tag
VLsw Nacht
MTag
P Tag
VLsw Nacht
MSacht
MSacht
DStrO Tag
DStrO Nacht
DV Tag
DV Nacht
Steigung
DStg
DStracht
Em25 Nacht
Lm25 Nacht
LmE Tag
LmE Nacht Straßenname Straßenname
Geschwindigkeit Pkw in Zeitbereich
Geschwindigkeit Lbw in Zeitbereich
Geschwindigkeit Lbw in Zeitbereich
Geschwindigkeit Lbw in Zeitbereich
Geschwindigkeit Lbw in Zeitbereich
Mttlerer stündlicher Verkehr in Zeitbereich
Kortektur Straßenoberfläche in Zeitbereich
Korrektur Straßenoberfläche in Zeitbereich
Geschwindigkeits korrektur in Zeitbereich
Geschwindigkeits korrektur in Zeitbereich
Langsneigung in Prozent (positive Werte Steigung, negative Werte Gefälle)
Zuschlag für Steigung
Regelöfferenz durch Redischen
Regelöfferenz durch Redischen
Basis-Ern Steigung
Regelöfferenz Auch Redischen
Regelöfferenz Auch Redischen Regelöfferenz Auch Redischen
Regelöfferenz Auch Redischen Regelöfferenz Auch Redischen Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelöfferenz Regelö km/h km/h km/h kfz/h % Kfz/h % dB dB

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: 9 Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster Seite 1 von 2

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Emissionsberechnung Straße: Isophone in 2m über Gelände (Außenbereich) - Verkehr gesamt 2025

Straße	Abschnittsname	vPkw	vPkw	vLkw	vLkw	M	р	М	р	DStrO	DStrO	Dv	Dv	Steigung	DStg	Drefl	Lm25	Lm25	LmE	LmE	
		Tag	Nacht	Tag	Nacht	Tag	Tag	Nacht	Nacht	Tag	Nacht	Tag	Nacht		-		Tag	Nacht	Tag	Nacht	
		km/h	km/h	km/h	km/h	Kfz/h	%	Kfz/h	%	dB	dB	dB	dB	%	dB	dB	dB(A)	dB(A)	dB(A)	dB(A)	
Hauptstr. (B15)		50	50	50	50	476	9,8	96	12,8	0,00	0,00	-4,16	-3,89	1,3	0,0	0,0	66,6	60,2	62,5	56,3	
Hauptstr. (B15)		80	80	80	80	476	9,8	96	12,8	0,00	0,00	-1,12	-0,95	1,3	0,0	0,0	66,6	60,2	65,5	59,3	

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: 9 Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster

7.3. Anlage 1.3: Eingabedaten Verkehrslärm und aktiver Schallschutz

Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Emissionsberechnung Schienenverkehr:

Gleis	2		Gleis:		Richtung:				, and	Abscl	hnitt: 1	Km: 0+0	00		
12	W	Zugart	Anzal	l Züge	Geschw. Länge				Emis	pegel L'w [d	[dB(A)]				
Nr.		Name	tags	nachts		je Zug	Max	2	tags			nachts			
- Inc					km/h	m		0 m	4 m	5 n	n 0 m	4 m	5		
24	GZ-E		14,0	14,0	100	715	120	84,1	67,4	42,	3 87,1	70,4	45		
25	RV-E		54,0	6,0	140	135	170	79,9	60,8	58,		54,3	52		
26	IC-E		1,0	1,0	140	283	(4 77	67,8	50,0	38,		53,0	41		
27	IC-E		7,0 76,0	21,0	140	336	-	77,0 86.2	58,5 68.8	46, 58,		70.0	53		
Schie	Gesa enen-	I I		ächen-	Kurvenfahr	- Gleisbi	rome		hrungen g		9 87,4 Sonstige	70,6	cke		
	neter	Fahrbahnart		tand	geräusch	geräus			haeräuso	900	Geräusche	KBr	KL		
	m	c1	7	2	dB	geraus		Quietsc	dB	JIE	dB	dB	d		
_	+000	Standardfahrbahn		-	UD -	UE -			- -	-	ub -	ub .	- 0		
Gleis	11111111111111111	Otaridardiariibarii	Gleis:		Richtung:		. ,			Absol	hnitt: 2	Km: 0+7	nn		
JICIS	_	Zugart		ıl Züge		Länge	· ·				pegel L'w [d		00		
NI=		Name		I am a state of the same of	Geschw.	Länge	Mari			SIONS	peger L w [u	E11281052			
Nr.		ivame	tags	nachts	Lean //m	je Zug	Max	0	tags	E	- 0	nachts	=		
24	C7 E		14.0	14.0	km/h	71.5	0-0	0 m	4 m	5 n		4 m	5		
24 25	GZ-E RV-E		14,0 54,0	14,0 6,0	100 70	715 135	-	84,1 76,1	67,4 58,1	42, 43,		70,4 51,6	45 36		
26	IC-E		1,0	1,0	140	283	150	67.8	50,0	38,		53.0	41		
27	IC-E		7,0	,,,	140	336	-	77,0	58,5	46,		-	1		
-	Gesa		76,0	21,0		-	1-1	85,5	68,4	49,		70,5	4		
Schie	enen-		Fahrfl	ächen-	Kurvenfahr	- Gleisbi	rems-	Vorke	hrungen g	g. T	Sonstige	Brü	cke		
kilon	neter	Fahrbahnart	zus	tand	geräusch	geräus	ch KL	Quietso	chgeräusc	che	Geräusche	KBr	KI		
	m	c1		:2	dB	dE	3		dB		dB	dB	C		
0	+700	Standardfahrbahn		ĦS.	-		0		(5)		-	-			
Gleis	2		Gleis:		Richtung:				0.9	Abscl	hnitt: 3	itt: 3 Km: 1+119			
		Zugart	Anzah	l Züge	Geschw.	Länge			Emissionspegel L'w [dB(A)]		B(A)]				
Nr.		Name	tags	nachts		je Zug	Max		tags			nachts			
					km/h	m		0 m	4 m	5 n	n 0 m	4 m	5		
24	GZ-E		14,0	14,0	100	715		84,1	67,4	42,	3 87,1	70,4	4		
25	RV-E		54,0	6,0	140	135	-	79,9	60,8	58,		54,3	52		
26	IC-E		1,0	1,0	140	283	77.7	67,8	50,0	38,		53,0	4		
27	IC-E		7,0	21,0	140	336	(#/)	77,0	58,5	46,		70.0	E'		
Schie	Gesa enen-	uriu 	76,0	ächen-	Kurvenfahr-	Gleisbi	rome	86,2 Vorko	68,8 hrungen g	58,	9 87,4 Sonstige	70,6	53 cke		
	neter	Fahrbahnart		tand		geräus			chgeräusc		Geräusche	KBr	KI		
	m	c1	10000	2	geräusch dB	geraus		Quietsc	dB	JIE	dB	dB	d		
	+119	Standardfahrbahn		-	-	- UL			ub -	_	- UD	ub -	-		
	+339	Standardfahrbahn		-	-				-		-	_			
Gleis	1		Gleis:		Richtung:	- 1/2				Abscl	hnitt: 4	Km: 0+0	00		
	entil.	Zugart	Anzah	ıl Züge	Geschw.	Länge			Fmis	sions	pegel L'w [d				
Nr.		Name	tags	nachts		je Zug	Max		tags			nachts			
reconsec.				1,1010,1010	km/h	m	101000	0 m	4 m	5 n	n 0 m	4 m	5		
24	GZ-E		15,0	14,0	100	715	- 1	84,4	67,7	42,		70,4	45		
25	RV-E	ET	54,0	6,0	140	135	(20)	79,9	60,8	58,	5 73,4	54,3	52		
26	IC-E		1,0	1,0	140	283	87.8	67,8	50,0	38,		53,0	4		
	IC-E		8,0	1,0	140	336	-	77,6	59,1	47,		53,1	4		
27	Gesa	ımt	78,0	22,0	-	-	-	86,4	69,0	59,		70,7	53		
-				ächen-	Kurvenfahr-	 Gleisbi 			hrungen (200	Sonstige	0.0000000000000000000000000000000000000	cke		
- Schie	enen-		transfer and the		The second secon	255	on Ki	Quietso	chgeräusc	che	Geräusche	KBr	K		
Schie kilon	enen- neter	Fahrbahnart	zus	tand	geräusch	geräus					dB				
- Schie kilon k	enen- neter m	c 1	zus	tand :2	dB	dE	3		dB	-		dB			
Schie kilon k	enen- neter m	16240746927486874	zus	tand	dB -		3		-	Abaci	-	-			
- Schie kilon k	enen- neter m	c1 Standardfahrbahn	zus Gleis:	tand :2 -	dB - Richtung:	dE	3		-	WWW.	- hnitt: 5	- Km: 0+7			
Schie kilon k 0 Gleis	enen- neter m	c1 Standardfahrbahn Zugart	Gleis:	tand 2 - I Züge	dB -	dE -	3		Emis	WWW.	-	- Km: 0+7 B(A)]			
Schie kilon k 0 Gleis	enen- neter m	c1 Standardfahrbahn	zus Gleis:	tand :2 -	dB - Richtung: Geschw.	Länge je Zug	3		Emis tags	sions	- hnitt: 5 pegel L'w [d	Km: 0+7 B(A)] nachts	00		
Schie kilon k 0 Gleis	enen- meter m +000	c1 Standardfahrbahn Zugart Name	Gleis: Anzat	tand 22 - Il Züge nachts	dB - Richtung: Geschw.	Länge je Zug m	Max	0 m	Emis tags	sions 5 n	- hnitt: 5 pegel L'w [d n 0 m	- Km: 0+7 B(A)] nachts 4 m	00		
Schie kilon k 0 Gleis Nr. 24	enen- neter m +000 1	c1 Standardfahrbahn Zugart Name	Gleis: Anzah tags	tand 22 - Il Züge nachts	dB - Richtung: Geschw. km/h 100	Länge je Zug m	Max	0 m 84,4	Emis tags 4 m 67,7	5 n	- hnitt: 5 pegel L'w [d n 0 m 6 87,1	- Km: 0+7 B(A)] nachts 4 m 70,4	00 5		
Schie kilon k 0 Gleis Nr.	enen- neter m ++000 1	c1 Standardfahrbahn Zugart Name	Gleis: Anzał tags 15,0 54,0	I Züge nachts	dB - Richtung: Geschw. km/h 100 70	Länge je Zug m 715 135	Max	0 m 84,4 76,1	Emis tags 4 m 67,7 58,1	5 n 42, 43,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6	00 5 4: 30		
Schie kilon k 0 Gleis Nr. 24 25 26	enen- neter m ++000 1 GZ-E RV-E IC-E	c1 Standardfahrbahn Zugart Name T	Gleis: Anzał tags 15,0 54,0 1,0	tand 32 	dB - Richtung: Geschw. km/h 100 70 140	Länge je Zug m 715 135 283	Max	0 m 84,4 76,1 67,8	Emis tags 4 m 67,7 58,1 50,0	5 n 42, 43, 38,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5 2 70,8	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6 53,0	00 5 4! 36 4		
Schie kilon k 0 Gleis Nr.	GZ-E RV-E IC-E IC-E	c1 Standardfahrbahn Zugart Name TT 10	Gleis: Anzat tags 15,0 54,0 1,0 8,0	tand 52 	dB - Richtung: Geschw. km/h 100 70	Länge je Zug m 715 135	Max	0 m 84,4 76,1 67,8 77,6	Emis tags 4 m 67,7 58,1 50,0 59,1	5 n 42, 43, 38, 47,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5 2 70,8 2 71,6	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6 53,0 53,1	00 5 4: 3: 4: 4:		
Schie kilon k 0 Gleis Nr. 24 25 26 27	enen- neter m ++000 1 GZ-E RV-E IC-E	c1 Standardfahrbahn Zugart Name TT 10	Gleis: Anzał tags 15,0 54,0 1,0 8,0 78,0	tand 32 	dB - Richtung: Geschw. km/h 100 70 140	Länge je Zug m 715 135 283 336	Max	0 m 84,4 76,1 67,8 77,6 85,8	Emis tags 4 m 67,7 58,1 50,0	5 n 42, 43, 38, 47,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5 2 70,8 2 71,6 0 87,4	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6 53,0 53,1 70,6	00 5 4! 30 4'		
Schiekilon kilon k 0 Gleis Nr. 24 25 26 27	GZ-E RV-E IC-E Gesa enen-	C1 Standardfahrbahn Zugart Name IT 10 12	Gleis: Anzah tags 15,0 54,0 1,0 8,0 78,0 Fahrfil	1 Züge nachts 14,0 6,0 1,0 22,0 ächen-	dB - Richtung: Geschw. km/h 100 70 140 140 - Kurvenfahr	Länge je Zug m 715 135 283 336	Max	0 m 84,4 76,1 67,8 77,6 85,8 Vorke	Emis tags 4 m 67,7 58,1 50,0 59,1 68,7 hrungen g	5 n 42, 43, 38, 47, 50,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5 2 70,8 2 71,6 0 87,4 Sonstige	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6 53,0 53,1 70,6	000 5 45 47 47 48 100000000000000000000000000000000000		
Schie kilon k 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GZ-E RV-E IC-E Gesa	c1 Standardfahrbahn Zugart Name TT 10	Gleis: Anzar tags 15,0 54,0 1,0 8,0 78,0 Fahrfl zus	1 Züge nachts 14,0 6,0 1,0 1,0 22,0	dB - Richtung: Geschw. km/h 100 70 140 140	Länge je Zug m 715 135 283 336	Max rems-	0 m 84,4 76,1 67,8 77,6 85,8 Vorke	Emis tags 4 m 67,7 58,1 50,0 59,1 68,7	5 n 42, 43, 38, 47, 50,	- hnitt: 5 pegel L'w [d n 0 m 6 87,1 5 69,5 2 70,8 2 71,6 0 87,4	- Km: 0+7 B(A)] nachts 4 m 70,4 51,6 53,0 53,1 70,6 Brü	5 45 36 41 41 48		

ProjektNr.: 6061.1/2018-AS	Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster	Seite 1 von 2
SoundPLAN 7.4		

7.3. Anlage 1.3: Eingabedaten Verkehrslärm und aktiver Schallschutz

Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Emissionsberechnung Schienenverkehr:

Gleis	s 1	Gleis:	Gleis: Richtung:				Abschnitt: 6 Km: 1+119					19
	Zugart	Anzal	Anzahl Züge		Länge		Emissionspegel L'w [dB(A)]					
Nr.	Name	tags	nachts		je Zug	Max		tags			nachts	
-				km/h	m		0 m	4 m	5 m	0 m	4 m	5 m
24	GZ-E	15,0	14,0	100	715	120	84,4	67,7	42,6	87,1	70,4	45,3
25	RV-ET	54,0	6,0	140	135	1993	79,9	60,8	58,5	73,4	54,3	52,0
26	IC-E 10	1,0	1,0	140	283	(47)	67,8	50,0	38,2	70,8	53,0	41,2
27	IC-E 12	8,0	1,0	140	336	-	77,6	59,1	47,2	71,6	53,1	41,2
-	Gesamt	78,0	22,0	200		1=8	86,4	69,0	59,0	87,5	70,7	53,4
Schienen-		Fahrfl	Fahrflächen-		r- Gleisbrems-		Vorkehrungen g.		g.	Sonstige	Brücke	
kilor	meter Fahrbahnart	zus	tand	geräusch	geräus	geräusch KL		Quietschgeräusche		Seräusche	KBr	KLM
k	km c1		c2		dE	dB		dB		dB	dB	dB
1	1+119 Standardfahrbahn		1+1		-		-				-	-
1	1+339 Standardfahrbahn		3727		127		27			12	99	-

ProjektNr.: 6061.1/2018-AS	Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster	Seite 2 von 2
SoundPLAN 7.4		

Ausdruck aktiver Schallschutz						
Lärmschutzwall						
	x,y - GK-Koordinaten					
x	z - Höhe Unterkante in Meter ü. NN					
	(Urgelände aus /13/)					
NAME =Ls-Wall H=3,5	(0.90.000 0.00,)					
HEIGHT =0,50						
SLOPELEFT =0,00	1186					
SLOPERIGHT =0,00	Höhe					
TOPWIDTH =0,00	Neigung 1:1,5					
4515100 07 5421675 05 251 20	Kronenbreite					
4515109.07 5421675.95 351.28						
HEIGHT =3,50						
SLOPELEFT						
SLOPERIGHT =-1,50						
TOPWIDTH =0,00						
3,00						
4515110.72 5421683.48 351.32						
4515097.85 5421710.07 351.27						
4515085.09 5421737.18 350.85						
4515070.83 5421769.10 349.85						
4515062.98 5421787.56 349.48						
HEIGHT =0,50						
SLOPELEFT =0,00						
SLOPERIGHT =0,00						
TOPWIDTH =0,00						
4515056 60 5421700 65 240 56						
4515056.69 5421790.65 349.56						

Nein

7.4. **Anlage 1.4: Rechenlauf-Information**

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Rechenlauf-Info: Isophone in 2m über Gelände (Außenbereich) - Verkehr gesamt 2025

Projektbeschreibung

Proiekttitel: Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrsl

Projekt Nr. Bearbeiter: Auftraggeber: 6061.1/2018-AS
Dipl. Geogr. (Univ) Annette Schedding
Firma TEGULA Massivhaus GribH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg

Beschreibung: nur Verkehrslärm gem- Besprechung im LRA Regensburg am

Rechenlaufbeschreibung

Rasterlämkarte

Rechenkem: Titel: Isophone in 2m über Gelände (Außenbereich) - Verkehr gesamt 2025

Gruppe: Laufdatei: RunFile.runx

Ergebnisnummer: Lokale Berechnung (Anzahl Threads = 0) Berechnungsbeginn: 13.06.2018 14:14:22 Berechnungsende: 13.06.2018 14:15:45 01:20:699 [ms:ms]

Anzahl Punkte: Anzahl berechneter Punkte: 15.05.2018 (32 bit) Kernel Version:

Rechenlaufparameter

Reflexionsordnung Maximaler Reflexionsabstand zum Empfänger Maximaler Reflexionsabstand zur Quelle 200 m 50 m 5000 m Suchradius 0,100 dB

Bodeneffektgebiete aus Straßenoberflächen erzeugen:

5 dB Bonus für Schiene ist gesetzt Nein

Richtlinien:

Straßen: RI S-90

Rechtsverkehr
Emissionsberechnung nach: RLS
Straßensteigung geglättet über eine Länge von:
Berechnung mit Seitenbeugung: Nein 15 m

Minderung
Bewuchs:
Bebauung: Industriegelände: Benutzerdefiniert

Emissionsberechnung nach: Schall 03-2012

20,0 dB / 25,0 dB

Begrenzung des Beugungsverlusts: einfach/ mehrfach Berechnung mit Seitenbeugung: Ja

Minderung Bewuchs: Keine Dämofung Bebauung: Industriegelände: Keine Dämpfung Keine Dämpfung

Bewertung: Rasterkarte: DIN 18005 Verkehr (1987)

5,00 m 2,000 m Rasterabstand:

Höhe über Gelände: Rasterinterpolation:

Feldgröße =

Min/Max =

Geometriedaten

6061 1 Verkehr gesamt Prognose 2025.sit 13 06 2018 13:57:14 enthält: 4459_Geb-Lidl NN(1).geo

4909_FM-Gelaende-geplant.geo 11.06.2018 13:48:26

 4909_Geb-Planung 01-2014 mit NN.geo
 12.06.2018 17:18:42

 4909_KITA_ Gebauede ohne IO mit NN.geo
 11.06.2018 13:48:26

 4909_LS-KiTa.geo
 11.06.2018 13:48:26

 4909-LS-Getraenke.geo
 11.06.2018 13:48:26

 4909-LS Getraenke.geo 11.06.2018 13:10:02
6061_0_Prognose B15.geo 12.06.2018 13:10:02
6061_1_DXF-Geb-Haupt NN via 4459.geo 11.06.2018 14:18:52
6061_1_LS-Wall_Urgelände DGM AK.geo 11.06.2018 16:05:16
6061_1_Prognose DB 2025 Schall 03-2012.geo
6061_1_Rechengebiet BV.geo 11.06.2018 16:52:30
6061_4459_1_DXF-Geb-Neben mt NN.geo 11.06.2018 13:48:26
MX099.dgm 13.06.2018 11:43:22

RDGM0099.dgm

ProiektNr.: 6061.1/2018-AS Ingenieurbüro Kottermair GmbH Seite 1 von 1 RechenlaufNr.: 9

13.06.2018 13:57:14

Schall 03-2012

SoundPLAN 7.4

7.4. **Anlage 1.4: Rechenlauf-Information**

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Rechenlauf-Info: Isophone in 8m über Gelände (ca. III bei Wohngebäuden) - Verkehr gesamt 2025

Projektbeschreibung

Proiekttitel: Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrsl

Projekt Nr. Bearbeiter: Auftraggeber: 6061.1/2018-AS
Dipl. Geogr. (Univ) Annette Schedding
Firma TEGULA Massivhaus GribH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg

Beschreibung: nur Verkehrslärm gem- Besprechung im LRA Regensburg am

Rechenlaufbeschreibung

Rasterlämkarte

Rechenkem: Titel: Isophone in 8m über Gelände (ca. III bei Wohngebäuden) - Verkehr gesamt 2025

Gruppe: Laufdatei: RunFile.runx

Ergebnisnummer: Lokale Berechnung (Anzahl Threads = 0) Berechnungsbeginn: 13.06.2018 14:15:45 13.06.2018 14:16:58 Berechnungsende: 01:11:012 [ms:ms] Anzahl Punkte: Anzahl berechneter Punkte:

15.05.2018 (32 bit) Kernel Version:

Rechenlaufparameter

Reflexionsordnung Maximaler Reflexionsabstand zum Empfänger Maximaler Reflexionsabstand zur Quelle 200 m 5000 m Suchradius 0,100 dB

Bodeneffektgebiete aus Straßenoberflächen erzeugen: Nein

5 dB Bonus für Schiene ist gesetzt Nein

Richtlinien:

Straßen: RI S-90

Rechtsverkehr
Emissionsberechnung nach: RLS
Straßensteigung geglättet über eine Länge von:
Berechnung mit Seitenbeugung: Nein 15 m

Minderung
Bewuchs:
Bebauung: Industriegelände: Benutzerdefiniert

Emissionsberechnung nach: Schall 03-2012

Begrenzung des Beugungsverlusts: einfach/ mehrfach Berechnung mit Seitenbeugung: Ja 20,0 dB / 25,0 dB

Minderung

Bewuchs: Keine Dämofung Bebauung: Industriegelände: Keine Dämpfung Keine Dämpfung

Bewertung: Rasterkarte: DIN 18005 Verkehr (1987)

5,00 m 8,000 m Rasterabstand:

Höhe über Gelände: Rasterinterpolation:

Feldgröße = Min/Max =

Geometriedaten

6061 1 Verkehr gesamt Prognose 2025.sit 13 06 2018 13:57:14 enthält: 4459_Geb-Lidl NN(1).geo

4909_FM-Gelaende-geplant.geo 11.06.2018 13:48:26

 4909_Geb-Planung 01-2014 mit NN.geo
 12.06.2018 17:18:42

 4909_KITA_ Gebauede ohne IO mit NN.geo
 11.06.2018 13:48:26

 4909_LS-KiTa.geo
 11.06.2018 13:48:26

 4909-LS-Getraenke.geo
 11.06.2018 13:48:26

 4909-LS Getraenke.geo 11.06.2018 13:10:02
6061_0_Prognose B15.geo 12.06.2018 13:10:02
6061_1_DXF-Geb-Haupt NN via 4459.geo 11.06.2018 14:18:52
6061_1_LS-Wall_Urgelände DGM AK.geo 11.06.2018 16:05:16
6061_1_Prognose DB 2025 Schall 03-2012.geo
6061_1_Rechengebiet BV.geo 11.06.2018 16:52:30
6061_4459_1_DXF-Geb-Neben mt NN.geo 11.06.2018 13:48:26
MX099.dgm 13.06.2018 11:43:22

RDGM0099.dgm

13.06.2018 13:57:14

Schall 03-2012

ProiektNr.: 6061.1/2018-AS Ingenieurbüro Kottermair GmbH Seite 1 von 1 RechenlaufNr.: 10 SoundPLAN 7.4

8. Anlage 2: Verkehrslärm mit Plangebäuden MI 1 - MI 4

Berechnungsdaten:

- Prognose Bahnstrecke 5500
- Prognose B 15

Beurteilung:

- Orientierungswerte 60/50 dB(A) für MI gem. DIN 18005-1, Beiblatt 1 /2/
- Grenzwerte 64/54 dB(A) für MI gem. 16. BImSchV /4/


8.1. Anlage 2.1: Gebäudelärmkarte Verkehrslärm Höhe I - Tag/Nacht

8.2. Anlage 2.2: Gebäudelärmkarte Verkehrslärm Höhe II - Tag/Nacht

8.3. Anlage 2.3: Gebäudelärmkarte Verkehrslärm Höhe III - Tag/Nacht

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

Legende laufende Nummer des Immissionsorts
Name des Immissionsorts
Stockwerk
Richtung
Gebielsnutzung
Z-Koordinate (FOK in Meter ü. NN)
Bodenhöhe
Orientierungswert Tag
Beutreilungspegel Tagt
Grenzwerübers chreitung in Zeitbereich LrT
Orientierungswert Nacht
Beutreilungspegel Nacht
Grenzwerüberschreitung in Zeitbereich LrN
Grenzwerüberschreitung in Zeitbereich LrN INr Immissionsort SW HR Nutzung Z GH OW,T LrT LrT,diff OW,N LrN,diff

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: 20 Seite 1 von 6 Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

IINI	Immissionsort	SW	HK	Nutzung	m Z	m GH	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
1	MI 1a-1b	EG	N	MI	351,9	346,1	60	46		50	39	-	
1	MI 1a-1b	1.0G	N	MI	355,9	346,1	60	46	-	50	40	-	
2	MI 1a-1b	EG	w	MI	351,9	347,2	60	51	- 1	50	44	-	
2	MI 1a-1b	1.0G	W	M	355,9	347,2	60	52		50	46	-	
3	MI 1a-1b	EG	s	MI	351,9	347,3	60	47	-	50	41	-	
3	MI 1a-1b	1.OG	S	M	355,9	347,3	60	50	-	50	44	-	
4	MI 1a-1b	EG	0	MI	351,9	347,3	60	46	-	50	40	-	
4	MI 1a-1b	1.0G	0	MI	355,9	347,3	60	45		50	39	-	
5	MI 2	EG	N	MI	354,0	348,5	60	49		50	43	-	
5	MI 2	1.0G	N	MI	356,8	348,5	60	50		50	44		
5	MI 2	2.0G	N	MI	359,6	348,5	60	50		50	44		
6	MI 2	EG	0	MI	354,0	348,9	60	46		50	40		
6	MI 2	1.0G	0	MI	356,8	348,9	60	46	-	50	40	-	
6	MI 2	2.OG		M	359,6	348,9	60	44		50	38	-	1
	MI 2 MI 2	EG 1.OG	N N	MI MI	354,0 356,8	348,8 348,8	60 60	52 53	1	50 50	46 47	1	
7	MI 2	2.0G	N	M	359,6	348,8	60	53		50	47		
8	MI 2	EG	l w	M			60	55			49		
8	MI 2	1.0G	l w	M	354,0 356,8	349,0 349,0	60	55 55	1	50 50	49	-	
8	MI 2	2.0G	w	M	359,6	349,0	60	56		50	50		
9	MI2	EG	N	MI	354,0	349,2	60	54		50	48		
9	MI 2	1.0G	N	M	356,8	349,2	60	55		50	49	:	
9	MI 2	2.OG	N	MI	359,6	349,2	60	56		50	50		
10	MI 2	EG	w	M	354,0	349,6	60	58	-	50	51	1	
10	MI 2	1.0G	w	MI	356,8	349,6	60	63	3	50	56	6	
10	MI 2	2.OG	w	MI	359,6	349,6	60	63	3	50	57	7	
11	MI 2	EG	s	MI	354,0	349,8	60	58		50	52	2	
11	MI 2	1.0G	s	MI	356,8	349,8	60	64	4	50	58	8	
11	MI 2	2.OG	S	MI	359,6	349,8	60	64	4	50	58	8	
12	MI 2	EG	W	MI	354,0	349,9	60	59		50	52	2	
	MI 2	1.OG	w	MI	356,8	349,9	60	64	4	50	58	8	
12	MI 2	2.OG	W	M	359,6	349,9	60	64	4	50	58	8	
	MI 2	EG	S	MI	354,0	349,9	60	55		50	48	-	
	MI 2	1.0G	S	MI	356,8	349,9	60	62	2	50	56	6	
13	MI 2	2.OG	S	M	359,6	349,9	60	63	3	50	57	7	1
	MI 2	EG	W	MI	354,0	349,8	60	53		50	47	-	
14	MI 2	1.0G	l w	M	356,8	349,8	60	58	-	50	52 57	2	
14	MI 2	2.OG		M	359,6	349,8	60	63	3	50			1
	MI 2 MI 2	EG	S	MI MI	354,0	349,8	60 60	50		50	43 47	-	
	MI2	1.0G 2.0G	S	MI	356,8 359,6	349,8 349,8	60	53 59	1	50 50	53	3	
				1									
16	MI 2 MI 2	EG 1.OG	0	MI MI	354,0 356,8	349,7 349,7	60 60	46 49		50 50	40 42	1	
10	livii 4	1.00	, 0	IVII	330,6	349,1	00	49		50	1 42		I .

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: 20 Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster Seite 2 von 6 undPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

INr	Immissionsort	SW	HR	Nutzung	Z	GH	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
16	MI 2	2.OG	0	M	359,6	349,7	60	53		50	46		
	MI 2	EG	s	MI	354,0	349,4	60	47	- 1	50	41	- 1	
17	MI 2	1.0G	s	MI	356,8	349,4	60	49		50	43	- 1	
17	MI 2	2.OG	S	MI	359,6	349,4	60	53	-	50	47		
18	MI 2	EG	w	MI	354,0	349,6	60	48		50	41	- 1	
18	MI 2	1.0G	w	MI	356,8	349,6	60	50		50	44	- 1	
18	MI 2	2.OG	W	MI	359,6	349,6	60	53	-	50	46		
	MI 2	EG	N	MI	354,0	350,2	60	49	- 1	50	43	- 1	
	MI 2	1.0G	N	MI	356,8	350,2	60	52	-	50	46		
19	MI 2	2.OG	N	MI	359,6	350,2	60	55	-	50	49		
	MI 2	EG	w	MI	354,0	350,5	60	55		50	49	-	
	MI 2	1.0G	W	MI	356,8	350,5	60	64	4	50	58	8	
20	MI 2	2.OG	W	MI	359,6	350,5	60	64	4	50	58	8	
	MI 2	EG	S	MI	354,0	350,6	60	55		50	49	-	
	MI 2	1.0G	S	MI	356,8	350,6	60	66	6	50	60	10	
	MI 2	2.OG	S	M	359,6	350,6	60	66	6	50	60	10	
	MI 2	EG	w	MI	354,0	350,7	60	56		50	50	-	
	MI 2	1.0G	w	MI	356,8	350,7	60	65	5	50	59	9	
22	MI 2	2.OG	W	M	359,6	350,7	60	66	6	50	59	9	
	MI 2	EG	S	MI	354,0	350,7	60	55		50	48	-	
	MI 2	1.OG	S	MI	356,8	350,7	60	60	-	50	54	4	
	MI 2	2.OG	S	M	359,6	350,7	60	64	4	50	58	8	
	MI 2	EG	W	MI	354,0	350,7	60	53		50	47	- 1	
	MI 2	1.0G	w	MI	356,8	350,7	60	58		50	52	2	
24	MI 2	2.OG	W	M	359,6	350,7	60	64	4	50	58	8	
	MI 2	EG	S	MI	354,0	350,6	60	50	-	50	44		
	MI 2	1.OG	S	MI	356,8	350,6	60	53	- 1	50	47		
	MI 2	2.OG	S	M	359,6	350,6	60	57	-	50	51	1	
	MI 2	EG	0	MI	354,0	350,0	60	50		50	44		
	MI 2 MI 2	1.0G 2.0G	0	M	356,8	350,0	60	50	-	50	44	:	
				M	359,6	350,0	60	51		50	45		
	MI 2	EG	s	MI	354,0	349,5	60	50	-	50	44	-	
	MI 2 MI 2	1.0G 2.0G	S	MI MI	356,8 359,6	349,5 349,5	60 60	51 53	1 :	50 50	45 47	:	
	MI 2	EG	0										
	MI2 MI2	1.0G	0	M	354,0	349,4	60	50	-	50	43	-	
	MI 2	2.0G	0	MI MI	356,8 359,6	349,4 349,4	60 60	51 50	1 :	50 50	44 44	:	
	MI 2	EG	N	M	354,0	349,3	60	47		50	41		
	MI2 MI2	1.0G	N	MI	354,0	349,3	60	47		50 50	41		
	MI 2	2.0G	N	M	359,6	349,3	60	49		50	35		
	MI 2	EG	0	MI	354,0	348,8	60	49		50	43	- 1	
30	IVII Z					348,8	60	50		50	43		
	MI 2	1.0G	0	MI	356,8								

 Projekt/Nr.: 6061.1/2018-AS
 Ingenieurbüro Kottermair GmbH
 Seite 3 von 6

 Rechenlauf/Nr.: 20
 Gewerbepark 4,85250 Altomünster
 Seite 3 von 6

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

IN	Immissionsort	SW	HR	Nutzung	Z 	GH	OW,T	LrT	LrT,diff dB(A)	OW,N dB(A)	LrN	LrN,diff dB(A)	
	lana i				m	m	dB(A)	dB(A)	aB(A)		dB(A)	aB(A)	
31	MI 3.1	EG	N	MI	350,4	347,3	60	46	-	50	40	-	
31	MI 3.1	1.0G	N N	MI MI	353,2	347,3	60 60	47 49	-	50 50	41 43		
_	MI 3.1	2.0G			356,0	347,3			-				
33	MI 3.1	EG 1.OG	S	MI	350,4	348,0	60	46		50	40	-	
33	MI 3.1 MI 3.1	2.OG	S S	MI MI	353,2 356,0	348,0 348,0	60 60	47 49	.	50 50	41 43	1	
_			0						-				
34	MI 3.1 MI 3.1	EG 1.OG	0	MI MI	350,4 353,2	347,6 347,6	60 60	48 49		50 50	42 42	-	
34	MI 3.1	2.OG	0	M	356,0	347,6	60	49		50	42		
35	MI 3.2	EG	N	M	350,7	347,5	60	47		50	41		
35	MI 3.2	1.0G	N	M	353,5	347,5	60	48	:	50	41		
35	MI 3.2	2.OG	N	M	356,3	347,5	60	50		50	44		
36	MI 3.2	EG	w	M	350,7	348.0	60	47		50	41	-	
36		1.0G	W	M	353,5	348,0	60	49		50	42		
36	MI 3.2	2.0G	W	M	356,3	348,0	60	50		50	44		
37	MI 3.2	EG	s	MI	350,7	348,2	60	46		50	39	-	
37		1.0G	S	M	353,5	348,2	60	47		50	41		
37	MI 3.2	2.0G	s	MI	356,3	348,2	60	49		50	43		
39	MI 3.3	EG	N	MI	351.1	348,0	60	48		50	42	-	
39		1.0G	N	M	353,9	348,0	60	49		50	43		
39	MI 3.3	2.OG	N	M	356.7	348.0	60	51		50	44		
41	MI 3.3	EG	S	MI	351,1	348.7	60	44		50	38	-	
41	MI 3.3	1.0G	S	MI	353,9	348,7	60	46		50	40		
41	MI 3.3	2.OG	Š	MI	356,7	348,7	60	48		50	42		
42	MI 3.3	EG	0	MI	351,1	348.3	60	47		50	41		
42		1.0G	ō	MI	353,9	348,3	60	49		50	42	-	
42		2.OG	Ó	MI	356,7	348,3	60	50	- 1	50	44	-	
43	MI 3.4	EG	N	MI	351,2	348,2	60	48		50	42	-	
43		1.0G	N	MI	354,0	348,2	60	49		50	43		
43	MI 3.4	2.OG	N	MI	356,8	348,2	60	51		50	45	-	
44	MI 3.4	EG	W	MI	351,2	348,5	60	48		50	42	-	
44	MI 3.4	1.0G	W	MI	354,0	348,5	60	49	-	50	43	-	
44	MI 3.4	2.OG	W	M	356,8	348,5	60	50		50	44	-	
45	MI 3.4	EG	S	MI	351,2	348,7	60	44	-	50	38	-	
45		1.0G	S	MI	354,0	348,7	60	46	-	50	40	-	
45	MI 3.4	2.OG	S	MI	356,8	348,7	60	48		50	42	-	
47	MI 3.5	EG	S	MI	352,2	349,7	60	50	-	50	44	- 1	
47	MI 3.5	1.0G	S	MI	355,0	349,7	60	51	-	50	45	-	
47	MI 3.5	2.OG	S	MI	357,8	349,7	60	52		50	46	-	
49		EG	N	MI	352,2	349,2	60	46	-	50	40	-	
49		1.0G	N	MI	355,0	349,2	60	48		50	41	-	
49	MI 3.5	2.OG	N	MI	357,8	349,2	60	48	-	50	41	-	
50		EG	W	MI	352,2	349,5	60	48	-	50	42	-	
50	MI 3.5	1.0G	W	MI	355,0	349,5	60	49		50	43	-	

ProjektNr.: 6061.1/2018-AS
RechenlaufNr.: 20

Ingenieurbüro Kottermair GmbH
Gewerbepark 4, 85250 Altomünster

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

INF Immissionsort SW HR Nutrung Z GH OW,T LTT LTT LTT GH OW,T dB(A) dB(A	
51 M3.6 EG S M 352.1 349.6 60 50 - 50 44 - - 51 M3.6 1.0G S M 352.1 349.6 60 51 - 50 45 - - - 50 45 - - - 50 45 - - - 50 45 - - 50 45 - - - 50 45 - - 50 45 - - 50 45 - - 50 45 - - 50 43 - - 50 43 - - 50 43 - - 50 43 - - 50 43 - - 50 43 - - 50 44 - - 50 44 - - 50 44 - - 50 44 -	
51 MI 3.6 1.0G S M 354.9 349.6 60 51 - 50 45 - 51 MI 3.6 2.0G S M 357.7 349.6 60 52 - 50 45 - 52 MI 3.6 EG O MI 352.1 349.3 60 48 - 50 42 - 53 MI 3.6 1.0G O MI 357.7 349.3 60 50 - 50 44 - 53 MI 3.6 1.0G O MI 352.1 349.1 60 45 - 50 44 - 53 MI 3.6 1.0G N MI 352.1 349.1 60 47 - 50 41 - 53 MI 3.6 1.0G N MI 357.7 349.1 60 47 - 50 41 - 55 MI 3.7 1.0G S MI 351.6 349.1 60 48 - 50 41 - 55 MI 3.7 1.0G <t< td=""><td></td></t<>	
51 M3.6 2.00 S M 35.7 349.6 60 52 - 50 45 - 52 M3.6 1.00 O M 35.7 349.3 60 50 - 50 42 - 52 M3.6 1.00 O M 354.9 349.3 60 50 - 50 43 - 52 M3.6 1.00 O M 357.7 349.3 60 50 - 50 44 - 53 M3.6 EG N M 352.1 349.1 60 45 - 50 41 - 53 M3.6 1.00 N M 354.9 349.1 60 47 - 50 41 - 55 M3.7 EG S M 351.6 349.1 60 48 - 50 42 - - 55	
52 M3.6 EG O MM 352.1 3.49.3 60 48 - 50 42 - - 52 M3.6 1.0G O MM 354.9 349.3 60 50 - 50 43 -	
52 M3.6 2.0G O M 354.9 349.3 60 50 - 50 43 - 52 M3.6 2.0G O M 357.7 349.1 60 50 - 50 44 - 53 M3.6 EG N M 354.9 349.1 60 47 - 50 41 - 53 M3.6 1.0G N M 354.9 349.1 60 47 - 50 41 - 55 M3.7 EG S M 351.6 349.1 60 47 - 50 41 - 55 M3.7 1.0G S M 351.6 349.1 60 49 - 50 43 - 55 M3.7 1.0G S M 351.6 348.7 60 49 - 50 44 - 57 M3.7 1.0G N M 351.6 348.7 60 47 - 50 4	
52 M3.6 2.OG O M 357.7 349.3 60 50 - 50 44 - 53 M3.6 EG N M 352.1 349.1 60 45 - 50 39 - 53 M3.6 1.0G N M 354.9 349.1 60 47 - 50 41 - 55 M3.7 EG S M 351.6 349.1 60 47 - 50 41 - 55 M3.7 LOG S M 351.6 349.1 60 49 - 50 42 - 55 M3.7 2.OG S M 351.6 349.1 60 49 - 50 42 - 57 M3.7 2.OG S M 351.6 349.1 60 45 - 50 43 - - 50 44	
53 M3.6 EG N M 352,1 349,1 60 45 - 50 39 - 53 M3.6 1.0G N M 354,9 349,1 60 47 - 50 41 - 55 M3.7 EG S M 351,6 349,1 60 47 - 50 41 - 55 M3.7 1.0G S M 354,4 349,1 60 49 - 50 43 - 55 M3.7 2.0G S M 351,6 349,1 60 49 - 50 43 - 55 M3.7 2.0G S M 357,2 349,1 60 50 - 50 44 - 57 M3.7 1.0G N M 354,4 348,7 60 47 - 50 41 - 57 M3.7	
53 M3.6 2.OG N M 35.49 349.1 60 47 - 50 41 - 55 M3.7 EG S M 351.6 349.1 60 47 - 50 41 - 55 M3.7 LOG S M 351.6 349.1 60 49 - 50 42 - 55 M3.7 1.OG S M 357.2 349.1 60 49 - 50 42 - 57 M3.7 2.OG S M 351.6 348.7 60 47 - 50 44 - 57 M3.7 1.OG N M 351.6 348.7 60 47 - 50 41 - 57 M3.7 1.OG N M 351.6 348.7 60 47 - 50 43 - 58 M3.7	
53 M13.6 2.OG N M1 357,7 349.1 60 47 - 50 41 - 55 M13.7 EG S M 354,4 349.1 60 49 - 50 43 - 55 M13.7 1.OG S M 357,2 349.1 60 49 - 50 43 - 57 M13.7 EG N M 351.6 348,7 60 45 - 50 44 - 57 M13.7 1.OG N M 354.2 348.7 60 47 - 50 41 - 57 M13.7 1.OG N M 351.6 349.7 60 47 - 50 41 - 58 M13.7 1.OG N M 351.6 349.0 60 49 - 50 43 - 58 M13.	
55 MI3.7 1.OG S MI 354,4 349,1 60 49 - 50 43 - 55 MI3.7 EG N MI 351,6 348,7 60 45 - 50 39 - 57 MI3.7 1.OG N MI 357,2 348,7 60 47 - 50 41 - 57 MI3.7 1.OG N MI 357,2 348,7 60 47 - 50 41 - 58 MI3.7 1.OG N MI 351,6 349,0 60 49 - 50 43 - 58 MI3.7 1.OG W MI 351,5 349,0 60 50 - 50 43 - 58 MI3.7 1.OG W MI 351,5 349,1 60 51 - 50 44 - 58	
55 Mm 3.7 1.OG S Mi 354,4 349,1 60 49 - 50 43 - 55 Mm 3.7 2.OG S Mi 357,2 349,1 60 49 - 50 43 - 57 Mm 3.7 EG N Mi 351,6 348,7 60 45 - 50 39 - 58 Mm 3.7 1.OG N Mi 351,6 349,0 60 49 - 50 43 - 58 Mm 3.7 1.OG W Mi 351,6 349,0 60 49 - 50 43 - 58 Mm 3.7 1.OG W Mi 357,2 349,0 60 50 - 50 43 - 59 Mm 3.8 EG S Mi 351,5 349,0 60 51 - 50 44 - 59 Mm 3.8 1.OG S Mi 354,3 349,1	
57 M3.7 EG N M 351.6 348.7 60 45 - 50 39 - 57 Mi3.7 1.0G N M 354.8 7 60 47 - 50 43 - 58 Mi3.7 2.0G N M 351.6 349.0 60 49 - 50 43 - 58 Mi3.7 1.0G W M 354.4 349.0 60 50 - 50 43 - 58 Mi3.7 2.0G W M 357.2 349.0 60 50 - 50 43 - 58 Mi3.7 2.0G W M 357.5 349.0 60 51 - 50 44 - 58 Mi3.7 2.0G W M 357.5 349.1 60 51 - 50 42 - 59 Mi3.8 <td></td>	
57 Mi.3.7 1.OG N Mi 354.4 348.7 60 47 - 50 41 - 58 Mi.3.7 EG W M 351.6 349.0 60 49 - 50 43 - 58 Mi.3.7 1.OG W M 354.4 349.0 60 50 - 50 43 - 58 Mi.3.7 2.OG W M 357.2 349.0 60 50 - 50 44 - 59 Mi.3.8 EG S M 351.5 349.1 60 48 - 50 42 - 59 Mi.3.8 1.OG S M 357.1 349.1 60 48 - 50 42 - 59 Mi.3.8 2.OG S M 357.1 349.1 60 49 - 50 44 - 60 <	
57 Mi3.7 2.OG N Mi 357.2 348.7 60 49 - 50 43 - 58 Mi3.7 EG W M 351.6 349.0 60 49 - 50 43 - 58 Mi3.7 1.OG W M 354.4 349.0 60 50 - 50 44 - 59 Mi3.8 EG S M 351.5 349.1 60 48 - 50 42 - 59 Mi3.8 1.OG S M 357.1 349.1 60 49 - 50 43 - 59 Mi3.8 2.OG S M 357.1 349.1 60 49 - 50 43 - 60 Mi3.8 EG O M 351.5 348.9 60 49 - 50 43 - 60 Mi3.8<	
58 MI 3.7 EG W MI 351.6 349.0 60 49 - 50 43 - 58 MI 3.7 1.0G W MI 354.2 349.0 60 50 - 50 44 - 58 MI 3.7 2.0G W MI 357.2 349.0 60 51 - 50 44 - 59 MI 3.8 EG S MI 351.5 349.1 60 48 - 50 42 - 59 MI 3.8 1.0G S MI 357.1 349.1 60 49 - 50 42 - 59 MI 3.8 2.0G S MI 357.1 349.1 60 49 - 50 43 - 60 MI 3.8 2.0G O MI 351.5 348.9 60 48 - 50 42 - 60	
58 Mi3.7 1.OG W Mi 354,4 349,0 60 50 - 50 44 - 58 Mi3.7 2.OG W Mi 357,2 349,0 60 51 - 50 45 - 59 Mi3.8 EG S Mi 351,5 349,1 60 48 - 50 42 - 59 Mi3.8 1.OG S Mi 357,1 349,1 60 49 - 50 43 - 60 Mi3.8 EG O Mi 351,5 348,9 60 48 - 50 42 - 60 Mi3.8 1.OG O Mi 351,5 348,9 60 48 - 50 42 - 60 Mi3.8 2.OG O Mi 351,5 348,9 60 49 - 50 42 - 60 Mi3.8 2.OG O Mi 357,1 348,9 60 49 - 50 42 -	
58 MI 3.7 2.OG W MI 357.2 349.0 60 51 - 50 45 - 59 MI3.8 EG S MI 351.5 349.1 60 48 - 50 42 - 59 MI3.8 1.OG S MI 357.1 349.1 60 50 - 50 43 - 60 MI3.8 EG O MI 351.5 348.9 60 48 - 50 42 - 60 MI3.8 1.OG O MI 357.1 348.9 60 49 - 50 42 - 60 MI3.8 2.OG O MI 357.1 348.9 60 49 - 50 42 - 60 MI3.8 2.OG O MI 357.1 348.9 60 49 - 50 42 - 50 <	
59 MI 3.8 EG S M 351,5 349,1 60 48 - 50 42 - 59 MI 3.8 1.0G S M 354,3 349,1 60 49 - 50 43 - 59 MI 3.8 2.0G S M 357,1 349,1 60 50 - 50 44 - 60 MI 3.8 EG O M 351,5 348,9 60 48 - 50 42 - 60 MI 3.8 1.0G O M 357,1 348,9 60 49 - 50 42 - 60 MI 3.8 2.0G O M 357,1 348,9 60 49 - 50 43 -	
59 Mm3.8 1.OG S Mm 354.3 349.1 60 49 - 50 43 - 59 Mm3.8 2.OG S Mm 357.1 349.1 60 50 - 50 44 - 60 Mm3.8 EG O Mm 351.5 348.9 60 48 - 50 42 - 60 Mm3.8 1.OG O Mm 354.3 348.9 60 49 - 50 42 - 60 Mm3.8 2.OG O Mm 357.1 348.9 60 49 - 50 42 -	
59 M13.8 2.OG S MI 357,1 349,1 60 50 - 50 44 - 60 M13.8 EG O MI 351,5 348,9 60 48 - 50 42 - 60 M13.8 1.OG O MI 354,3 348,9 60 49 - 50 42 - 60 M13.8 2.OG O MI 357,1 348,9 60 49 - 50 43 -	
60 MI 3.8	
60 M13.8 1.OG O M1 354,3 348,9 60 49 - 50 42 - 60 M13.8 2.OG O M1 357,1 348,9 60 49 - 50 43 -	
61 M38 FG N M 3515 3486 60 45 - 50 39 -	
61 MI 3.8 1.0G N MI 354,3 348,6 60 47 - 50 41 -	
61 MI3.8 2.0G N MI 357,1 348,6 60 48 - 50 42 -	
63 MI4.1 EG N MI 353,5 350,2 60 47 - 50 41 -	
63 M14.1 1.0G N MI 356.3 350.2 60 48 - 50 42 - 83 M14.1 2.0G N MI 359.1 350.2 60 47 - 50 41 -	
05 m ⁻⁴ .1 2.03 m m 339,1 330,2 00 47 - 30 47 -	
04 Mil -1 1.0G W Mil 356,3 350,2 60 54 - 50 48 -	
64 MI4.1 2.0G W MI 359,1 350,2 60 55 - 50 49 -	
65 MI 4.1 EG S MI 353,5 350,7 60 55 - 50 49 -	
65 MI 4.1 1.0G S MI 356,3 350,7 60 56 - 50 49 -	
65 MI 4.1 2.0G S MI 359,1 350,7 60 56 - 50 50 -	
66 MI4.1 EG O MI 353,5 350,9 60 50 - 50 43 -	
66 Mi4.1 1.0G O Mi 356,3 350,9 60 50 - 50 43 -	
66 MI4.1 2.0G O MI 359,1 350,9 60 48 - 50 42 -	
67 MI42 EG N MI 353,2 350,4 60 48 - 50 41 -	
67 Ml.4.2 1.OG N Ml 356.0 350.4 60 49 - 50 43 - 67 Ml.4.2 2.OG N Ml 358.8 350.4 60 50 - 50 44 -	
07 [min-2] 12-00 [N min 350,0 350,7 00 50 " 50 44 "	

 Projekt/Nr.: 6061.1/2018-AS
 Ingenieurbüro Kottermair GmbH
 Seite 5 von 6

 Rechenlauf/Nr.: 20
 Gewerbepark 4,85250 Altomünster
 Seite 5 von 6

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Straße

INr	Immissionsort	SW	HR	Nutzung	Z	GH	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
68	MI 4.2	EG	W	MI	353,2	350,7	60	54	-	50	48	-	
68	MI 4.2	1.0G	W	MI	356,0	350,7	60	55	-	50	49	-	
68	MI 4.2	2.OG	W	MI	358,8	350,7	60	56	-	50	50	-	
69	MI 4.2	EG	S	MI	353,2	350,6	60	57	-	50	51	1	
69	MI 4.2	1.0G	S	MI	356,0	350,6	60	58	-	50	52	2	
69	MI 4.2	2.OG	S	M	358,8	350,6	60	59	-	50	53	3	
70	MI 4.2	EG	0	MI	353,2	350,3	60	50		50	44		
70	MI 4.2	1.0G	0	MI	356,0	350,3	60	52	- 1	50	45		
70	MI 4.2	2.OG	0	M	358,8	350,3	60	53	-	50	47	-	
71	MI 4.3	EG	N	MI	353,7	351,0	60	49		50	43	-	
71	MI 4.3	1.0G	N	MI	356,5	351,0	60	52	- 1	50	46	-	
71	MI 4.3	2.OG	N	MI	359,3	351,0	60	55		50	49		
72	MI 4.3	EG	W	MI	353,7	351,3	60	56		50	50		
	MI 4.3	1.0G	W	MI	356,5	351,3	60	63	3	50	56	6	
72	MI 4.3	2.OG	W	M	359,3	351,3	60	65	5	50	59	9	
73	MI 4.3	EG	S	MI	353,7	351,2	60	60		50	54	4	
	MI 4.3	1.0G	S	MI	356,5	351,2	60	62	2	50	56	6	
73	MI 4.3	2.OG	S	MI	359,3	351,2	60	64	4	50	57	7	
74	MI 4.3	EG	0	MI	353,7	350,9	60	54		50	48		
	MI 4.3	1.0G	Ö	MI	356,5	350,9	60	55		50	49	- 1	
	MI 4.3	2.OG	o	MI	359,3	350,9	60	55		50	49		

ProjektNr.: 6061.1/2018-AS
RechenlaufNr.: 20

Ingenieurbüro Kottermair GmbH
Seite 6 von 6
Gewerbepark 4, 85250 Altomünster

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

 Projekt Mr.: 6061.1/2018-AS
 Ingenieurbüro Kottermair GmbH
 Seite 1 von 6

 Rechenlauf Mr.: 21
 Gewerbepark 4,85250 Altomünster

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

INI	Immissionsort	SW	HK	Nutzung	m Z	m GH	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
1	MI 1a-1b	EG	N	М	351,9	346,1	60	60	ub(A)	50	61	11	
	MI 1a-1b	1.0G	N	MI	355,9	346,1	60	60		50	62	12	
	MI 1a-1b	EG	W	MI	351,9	347,2	60	53	-	50	55	5	
2	MI 1a-1b	1.0G	w	MI	355,9	347,2	60	51	-	50	52	2	
3	MI 1a-1b	EG	s	MI	351,9	347,3	60	47	-	50	49	- 1	
3	MI 1a-1b	1.0G	S	MI	355,9	347,3	60	51		50	53	3	
	MI 1a-1b	EG	0	MI	351,9	347,3	60	58	-	50	60	10	
	MI 1a-1b	1.OG	0	MI	355,9	347,3	60	60	-	50	62	12	
	MI2	EG	N	MI	354,0	348,5	60	53	-	50	54	4	
5 5	MI 2 MI 2	1.0G 2.0G	N N	MI MI	356,8 359,6	348,5 348,5	60 60	53 55	:	50 50	54 57	4 7	
	MI 2	EG	0	MI	354,0	348,9	60	55		50	57	7	
	MI 2	1.0G	o	MI	356,8	348,9	60	56		50	57	7	
6	MI 2	2.OG	ō	MI	359,6	348,9	60	57	-	50	59	9	
	MI 2	EG	N	MI	354,0	348,8	60	54	-	50	55	5	
	MI 2	1.OG	N	MI	356,8	348,8	60	54	-	50	56	6	
7	MI 2	2.OG	N	MI	359,6	348,8	60	56		50	57	7	
	MI 2	EG	W	MI	354,0	349,0	60	49	-	50	51	1	
8	MI 2	1.0G 2.0G	W	MI MI	356,8 359,6	349,0 349,0	60	50 50	-	50 50	51	1	
-	MI 2		W				60				51		
	MI 2	EG 1.OG	N N	MI MI	354,0 356,8	349,2 349,2	60 60	54 54		50 50	55 56	5 6	
9	MI 2	2.OG	N	MI	359,6	349,2	60	55		50	56	6	
10	MI2	EG	W	MI	354,0	349,6	60	45	-	50	47	-	
	MI 2	1.0G	W	MI	356,8	349,6	60	46	-	50	48	- 1	
	MI 2	2.OG	W	MI	359,6	349,6	60	46	-	50	48	-	
	MI 2	EG	S	MI	354,0	349,8	60	36	-	50	38	-	
	MI 2 MI 2	1.0G	S	MI	356,8	349,8	60	37		50	38	-	
		2.OG	S	MI	359,6	349,8	60	37	-	50	39	-	
	MI 2 MI 2	EG 1.OG	W	MI MI	354,0 356,8	349,9 349,9	60 60	39 40		50 50	41 41	1	
12	MI 2	2.OG	w	MI	359,6	349,9	60	39		50	40		
	MI 2	EG	s	MI	354,0	349,9	60	38	i . i	50	40		
	MI 2	1.0G	s	MI	356,8	349,9	60	40		50	41		
	MI 2	2.OG	S	MI	359,6	349,9	60	44	-	50	45	-	
	MI 2	EG	W	MI	354,0	349,8	60	37	-	50	38	-	
	MI 2	1.0G	W	MI	356,8	349,8	60	37	-	50	39	-	
14	MI2	2.OG	W	MI	359,6	349,8	60	41	-	50	42	-	
	MI 2	EG	S	MI	354,0	349,8	60	39	-	50	41	-	
	MI 2 MI 2	1.0G 2.0G	S S	MI MI	356,8 359,6	349,8 349,8	60 60	41 47	1 :	50 50	43 49	-	
_			0									-	<u> </u>
	MI 2 MI 2	EG 1.OG	0	MI MI	354,0 356,8	349,7 349,7	60 60	40 42		50 50	41 43		
10	livii 2	1 1.56		1411	550,0	343,1	00	72		50	1 43	- 1	1

ProjektNr.: 6061.1/2018-AS
RechenlaufNr.: 21

SoundPLAN 7.4

Ingenieurbüro Kottermair GmbH
Seite 2 von 6
Gewerbepark 4, 85250 Altomünster

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

17 M 2	INr	Immissionsort	SW	HR	Nutzung	Z	GH	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
17 M 2						m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
17 M 2	16	MI 2	2.OG	0	MI	359,6	349,7	60	47	-	50	49	-	
17 M 2	17													
18	17									i i				
18														1
18										1 1				
19										i i				
19 M														
19 M 2	19													
20	19									1 1				
20	20	MI2	FG	W	MI	354.0	350.5	60	38		50	39	-	
21 M2 EG S M1 354,0 350,6 60 36 - 50 38 - 1	20			W	MI					-			-	
21 M 2	20	MI 2	2.OG	W	MI	359,6	350,5	60	42	-	50	44	-	
21	21									-			-	
Miles	21													
1	21		1 1							-			-	
	22													
Miles										1 1				
1			_							-			_	
23 M 2														
24 MI2 EG W MI 354,0 350,7 60 36 - 50 38 - 24 MI2 2,0G W MI 356,8 350,7 60 36 - 50 38 - 25 MI2 EG S MI 354,0 350,6 60 46 - 50 45 - 25 MI2 1,0G S MI 356,8 350,6 60 46 - 50 47 - 25 MI2 2,0G S MI 356,8 350,6 60 46 - 50 47 - 25 MI2 2,0G S MI 356,8 350,6 60 49 - 50 51 1 26 MI2 EG O MI 356,8 350,6 60 49 - 50 51 1 27 MI2 EG O MI 355,6 350,0 60 49 - 50 51 1 28 MI2 1,0G O MI 356,8 350,0 60 49 - 50 51 1 28 MI2 2,0G S MI 359,6 350,0 60 46 - 50 47 - 28 MI2 1,0G O MI 359,6 350,0 60 49 - 50 51 1 29 MI2 EG S MI 356,8 350,0 60 48 - 50 49 - 20 MI 359,6 350,0 60 49 - 50 51 1 20 MI2 EG O MI 359,6 350,0 60 49 - 50 51 1 20 MI2 EG S MI 359,6 350,0 60 49 - 50 51 1 21 MI2 EG S MI 359,6 350,0 60 49 - 50 51 1 22 MI2 EG S MI 359,6 349,5 60 45 - 50 49 - 22 MI2 1,0G S MI 356,8 349,5 60 48 - 50 49 - 23 MI2 1,0G S MI 356,8 349,5 60 48 - 50 49 - 24 MI2 2,0G S MI 359,6 349,5 60 48 - 50 49 - 25 MI2 2,0G S MI 359,6 349,5 60 48 - 50 49 - 28 MI2 1,0G O MI 356,8 349,4 60 50 - 50 50 52 2 29 MI2 EG N MI 354,0 349,3 60 50 - 50 52 2 29 MI2 EG N MI 354,0 349,3 60 50 - 50 50 57 7 30 MI2 EG O MI 356,8 349,3 60 56 - 50 50 57 7 30 MI2 EG O MI 356,8 349,3 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,3 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,3 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,3 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 - 50 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 50 - 50 50 52 2 30 MI2 1,0G O MI 356,8 349,8 60 50 50 - 50 50 52 2	23									: :				
24 MI2 1.0G W MI 356,8 350,7 60 38 - 50 38 - 24 MI2 2.0G W MI 359,6 350,7 60 37 - 50 39 - - 20 45 - - 50 38 - - - 50 38 - - 50 45 - - 50 45 - - 50 45 - - 50 45 - - - 50 45 - - 50 45 - - 50 45 - - - 50 47 - - - 50 47 - - - 50 47 - - 50 47 - - 50 47 - - 50 47 - - 50 47 - - 50 47 - - 50 47 - - 50 48 - 50 45 - 50	24													
25 MI 2 EG S MI 354,0 350,6 60 43 - 50 45 - 50 45 - 50 47 - 55 M2 2 2 0	24													
25 MI2	24	MI 2	2.OG	W	MI	359,6	350,7	60	37	- 1	50	39	-	
25 M2 2 OG S MI 359,6 350,6 60 49 - 50 51 1 1 26 M2 1,0G O MI 354,0 350,6 60 49 - 50 51 1 1 27 M2 EG O MI 355,8 350,0 60 49 - 50 51 1 1 28 M2 1,0G O MI 355,8 350,0 60 49 - 50 51 1 29 M2 EG S MI 359,6 349,5 60 45 - 50 49 - 2 20 MI 359,6 349,5 60 48 - 50 49 - 2 20 MI 359,6 349,5 60 48 - 50 49 - 2 20 MI 359,6 349,5 60 48 - 50 49 - 2 20 MI 359,6 349,5 60 48 - 50 49 - 2 21 M2 2 LOG S MI 359,6 349,5 60 48 - 50 49 - 2 22 M2 2 LOG S MI 359,6 349,5 60 48 - 50 49 - 2 23 M2 LOG O MI 354,0 349,4 60 50 - 50 50 52 2 24 M2 LOG O MI 354,0 349,3 60 48 - 50 49 - 2 25 M2 LOG O MI 354,0 349,3 60 48 - 50 49 - 2 26 M2 LOG O MI 354,0 349,3 60 55 - 50 56 6 28 M2 LOG O MI 354,0 349,3 60 56 - 50 52 2 29 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,3 60 56 - 50 57 7 30 M2 LOG O MI 354,0 349,8 60 50 - 50 52 2	25	MI 2	EG	S	MI	354,0	350,6	60	43	- 1	50	45	-	
28 MI 2 EG O MI 354,0 350,0 60 49 - 50 51 1 2 2 6 MI 2 1.0G O MI 359,8 350,0 60 49 - 50 51 1 1 2 2 8 MI 2 2.0G O MI 359,8 350,0 60 54 - 50 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25									-				
28 MI2 1.0G O MI 356,8 350,0 60 49 - 50 51 1 27 MI2 EG S MI 359,6 350,0 60 45 - 50 55 5 27 MI2 1.0G S MI 356,8 349,5 60 48 - 50 49 - 27 MI2 2.0G S MI 359,6 349,5 60 48 - 50 49 - 27 MI2 2.0G S MI 359,6 349,5 60 47 - 50 49 - 28 MI2 EG O MI 354,0 349,4 60 50 - 50 52 2 28 MI2 2.0G O MI 354,0 349,3 60 55 - 50 56 6 29 MI2 1.0G N MI 354,0 349,3 60 50 - 50 52 2 29 MI2 1.0G N MI 354,0 349,3 60 50 - 50 52 2 29 MI2 1.0G O MI 354,0 3	25	MI2	2.OG	S	MI	359,6	350,6	60	49	- 1	50	51	1	
28 MI 2 Q.O. O MI 359,6 350,0 60 54 - 50 55 5 27 MI 2 E.G. S. MI 354,0 349,5 60 45 - 50 46 - 27 MI 2 1.0G S. MI 356,8 349,5 60 48 - 50 49 - 27 MI 2 2.0G S. MI 354,0 349,5 60 41 - 50 49 - 28 MI 2 E.G. O. MI 354,0 349,4 60 50 - 50 49 - 28 MI 2 1.0G O. MI 356,8 349,4 60 55 - 50 52 2 29 MI 2 2.0G N. MI 354,0 349,3 60 50	26													
27 MI 2 EG S MI 354,0 349,5 60 45 - 50 46 - 27 MI 2 2.0G S MI 356,8 349,5 60 48 - 50 49 - 28 MI 2 EG O MI 356,8 349,4 60 50 - 50 52 2 28 MI 2 EG N MI 356,8 349,4 60 55 - 50 56 6 28 MI 2 EG N MI 356,8 349,4 60 50 - 50 52 2 29 MI 2 EG N MI 356,8 349,4 60 55 - 50 56 6 29 MI 2 EG N MI 356,8 349,3 60 50 - 50 52 2 29 MI 2 EG N MI 356,8 349,3 60 50 - 50 52 2 29 MI 2 EG N MI 356,8 349,3 60 50 - 50 52 2 20 MI 356,8 349,3 60 50 - 50 52 2 30 MI 2 1.0G N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 1.0G N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 EG N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 EG N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 EG N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 EG N MI 359,6 349,3 60 50 - 50 52 2 30 MI 2 EG O MI 356,8 349,3 60 50 - 50 52 2 30 MI 2 EG O MI 356,8 349,3 60 50 50 - 50 52 2 30 MI 2 EG O MI 356,8 349,3 60 50 50 - 50 52 2 30 MI 2 EG O MI 356,8 348,8 60 50 - 50 52 2 30 MI 2 EG O MI 356,8 348,8 60 50 - 50 52 2 30 MI 2 EG O MI 356,8 348,8 60 50 - 50 52 2	26													
27 M12			_											
277 M12 2 OG S MI 359,6 349,5 60 51 - 50 53 3 288 M12 1 OG O MI 354,0 349,4 60 50 - 50 49 - 288 M12 1 OG O MI 356,8 349,4 60 55 - 50 52 2 289 M12 2 OG O MI 356,8 349,3 60 55 - 50 56 6 299 M12 1 OG N MI 356,8 349,3 60 50 - 50 52 2 299 M12 2 OG N MI 356,8 349,3 60 50 - 50 52 2 299 M12 2 OG N MI 356,8 349,3 60 50 - 50 52 2 310 M12 EG O MI 356,0 348,8 60 56 - 50 57 7 310 M12 1.0G O MI 356,8 348,8 60 50 - 50 52										1 1				
28 MI 2 EG O MI 354,0 349,4 60 47 - 50 49 - 2 28 MI 2 1.0G O MI 356,8 349,4 60 50 - 50 52 2 28 MI 2 2.0G O MI 356,8 349,4 60 55 - 50 56 6 29 MI 2 EG N MI 354,0 349,3 60 48 - 50 49 - 2 29 MI 2 1.0G N MI 354,0 349,3 60 50 - 50 52 2 29 MI 2 2.0G N MI 359,6 349,3 60 56 - 50 57 7 30 MI 2 EG O MI 354,0 349,8 60 56 - 50 57 7 30 MI 2 1.0G O MI 354,0 348,8 60 50 - 50 49 -	27													
28 MI2			_			_	_							
28 M12	28									1 1				
29 M12 1.0G N MI 356,8 349,3 60 50 - 50 52 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28									-				
29 Mu2 2.0G N Mil 359,6 349,3 60 56 - 50 57 7 30 Mi2 EG O Mil 354,0 348,8 60 50 - 50 49 - 30 Mi2 1.0G O Mil 356,8 348,8 60 50 - 50 52 2	29	MI 2	EG	N	MI	354,0	349,3	60	48	· I	50	49	-	
30 MI2 EG O MI 354,0 348,8 60 47 - 50 49 - 30 MI2 1.0G O MI 356,8 348,8 60 50 - 50 52 2	29									-				
30 MI2 1.OG O MI 356,8 348,8 60 50 - 50 52 2	29		2.OG	N	MI	359,6	349,3	60	56	-	50	57	7	
										1 1				
3U MIZ 2.0G U MI 359,6 348,8 60 55 - 50 57 7	30									1 1				
	30	IMI 2	2.OG	Ü	MI	359,6	348,8	60	55	-	50	57	7	

 Projekt/Nr.: 6061.1/2018-AS
 Ingenieurbüro Kottermair GmbH
 Seite 3 von 6

 Rechenlauf/Nr.: 21
 Gewerbepark 4,85250 Altomünster
 Seite 3 von 6

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

1	
31 M3.1 2.0G N MI 356.0 347.3 60 56 - 50 57 7	
33 M3.1 EG S MI 350,4 348,0 60 50 - 50 51 1 33 M3.1 1.0G S MI 353,2 348,0 60 51 - 50 52 2 33 M3.1 1.0G S MI 356,0 340, 60 52 - 50 54 4 4 M3.1 EG O MI 356,0 347,6 60 54 - 50 55 5 34 M3.1 1.0G O MI 353,0 347,6 60 55 - 50 57 7 34 M3.1 1.0G O MI 353,0 347,6 60 57 - 50 59 9 35 M3.2 EG N MI 350,7 347,5 60 49 - 50 50 - 50 35 M3.2 EG N MI 356,3 347,5 60 52 - 50 54 4 35 M3.2 EG N MI 353,5 347,5 60 52 - 50 54 4 36 M3.2 EG W MI 356,3 347,5 60 54 - 50 56 6 36 M3.2 EG W MI 356,3 347,5 60 54 - 50 56 6 36 M3.2 EG W MI 356,3 347,5 60 54 - 50 56 6 36 M3.2 EG W MI 356,3 347,5 60 54 - 50 56 6	
33 M3.1 1.0G S MI 35.2 348,0 60 51 - 50 52 2 34 M3.1 2.0G S MI 356.0 348,0 60 52 - 50 54 4 34 M3.1 1.0G O MI 350.4 347,6 60 55 - 50 55 5 34 M3.1 1.0G O MI 350.2 347,6 60 55 - 50 57 7 34 M3.1 1.0G O MI 350.2 347,6 60 55 - 50 57 7 35 M3.2 EG N MI 350.7 347,5 60 49 - 50 50 - 34 36 M3.2 EG N MI 355.3 347,5 60 52 - 50 54 4 36 M3.2 EG W MI 350.7 348,0 60 46 - 50 56 6 36 M3.2 EG W MI 350.7 348,0 60 46 - 50 56 6	
33 MI 3.1 2.OG S MI 356.0 348.0 60 52 - 50 54 4 34 MI3.1 EG O MI 350.4 347.6 60 54 - 50 55 5 34 MI3.1 1.OG O MI 352.0 347.6 60 55 - 50 57 7 34 MI3.1 2.OG O MI 356.0 347.6 60 57 - 50 59 9 35 MI3.2 EG N MI 350.7 347.5 60 49 - 50 50 - 35 MI3.2 1.OG N MI 350.7 347.5 60 52 - 50 50 - 35 MI3.2 2.OG N MI 350.7 347.5 60 54 - 50 56 6 36 <	
34 MI3.1 1.OG O MI 35.2 347.6 60 55 - 50 57 7 34 MI3.1 2.OG O MI 356.0 347.6 60 57 - 50 59 9 35 MI3.2 1.OG N MI 350.7 347.5 60 49 - 50 50 - 36 MI3.2 2.OG N MI 356.3 347.5 60 52 - 50 54 4 36 MI3.2 EG W MI 350.7 348.0 60 46 - 50 48 - 36 MI3.2 1.OG W MI 353.5 348.0 60 48 - 50 50 -	
34 M3.1 2.0G O MI 356.0 347.6 60 57 - 50 59 9 35 MI3.2 EG N MI 350.7 347.5 60 49 - 50 50 - 35 MI3.2 1.0G N MI 353.6 347.5 60 52 - 50 54 4 35 MI3.2 2.0G N MI 356.3 347.5 60 54 - 50 56 6 36 MI3.2 EG W MI 350.7 348.0 60 46 - 50 48 - 36 MI3.2 1.0G W MI 353.5 348.0 60 48 - 50 50 -	
35 M3.2 EG N MI 350,7 347,5 60 49 - 50 50 - 35 M3.2 1.0G N MI 353,5 347,5 60 52 - 50 50 - 54 4 3 M3.2 2.0G N MI 353,5 347,5 60 52 - 50 56 6 6 M3.2 EG W MI 350,7 348,0 60 46 - 50 48 - 36 M3.2 EG W MI 350,7 348,0 60 46 - 50 48 - 36 M3.2 1.0G W MI 353,5 348,0 60 48 - 50 50 - 50 - 50 - 50 - 50 - 50 - 50	
35 MI3.2 1.0G N MI 353.5 347.5 60 52 - 50 54 4 3 35 MI3.2 2.0G N MI 350.3 347.5 60 54 - 50 56 6 3	
35 M3.2 2.0G N MI 356.3 347.5 60 54 - 50 56 6 36 M3.2 EG W MI 350.7 348.0 60 46 - 50 48 - 36 M3.2 1.0G W MI 353.5 348.0 60 48 - 50 50 -	
36 MI3.2 EG W MI 350,7 348,0 60 46 - 50 48 - 36 MI3.2 1.0G W MI 353.5 348,0 60 48 - 50 50 -	
36 MI3.2 1.0G W MI 353,5 348,0 60 48 - 50 50 -	
37 Mi3.2 EG S Mi 350,7 348,2 60 49 - 50 51 1	
37 MI3.2 1.0G S MI 353,5 348,2 60 51 - 50 52 2	
37 MI 3.2 2.0G S MI 356,3 348,2 60 53 - 50 55 5	
39 MI 3.3 EG N MI 351,1 348,0 60 48 - 50 50 -	
39 MI3.3 1.0G N MI 353,9 348,0 60 50 - 50 52 2	
39 M3.3 2.0G N MI 356,7 348,0 60 53 - 50 54 4	
41 M3.3 EG S MI 351,1 348,7 60 47 - 50 49 - 41 M3.3 1.0G S MI 353,9 348,7 60 49 - 50 50 -	
41 MI3.3 2.0G S MI 356.7 348.7 60 51 - 50 53 3	
42 MI3.3 EG O MI 351.1 348.3 60 48 - 50 50 -	
42 MI3.3 1.0G O MI 353,9 348,3 60 51 - 50 53 3	
42 MI 3.3 2.0G O MI 356,7 348,3 60 53 - 50 55 5	
43 MI3.4 EG N MI 351,2 348,2 60 48 - 50 50 -	
43 Mi3.4 1.0G N Mi 354.0 348.2 60 50 - 50 52 2 43 Mi3.4 2.0G N Mi 356.8 348.2 60 52 - 50 54 4	
44 M13.4 EG W M1 351,2 348,5 60 46 - 50 48 - 44 M13.4 1.0G W M1 354,0 348,5 60 48 - 50 49 -	
44 Mil 3.4 2.0G W Mil 356.8 348,5 60 50 - 50 51 1	
45 Mi 3.4 EG S Mi 3512 348,7 60 47 - 50 48 -	
45 MI 3.4 1.0G S MI 354,0 348,7 60 48 - 50 50 -	
45 MI 3.4 2.0G S MI 356,8 348,7 60 51 - 50 52 2	
47 MI 3.5 EG S MI 352,2 349,7 60 45 - 50 47 -	
47 Ml3.5 1.0G S Ml 355,0 349,7 60 48 - 50 49 - 47 Ml3.5 2.0G S Ml 357,8 349,7 60 51 - 50 52 2	
47 M3.5 EG N M 35/2 349.2 60 48 - 50 49 -	
49 M13.5 EG N MI 35.2,2 349,2 50 49 - 50 49 - 49 M13.5 1.0G N MI 35.5,0 349,2 60 50 - 50 52 2	
49 Mi3.5 2.OG N Mi 357,8 349,2 60 53 - 55 5	
50 MI3.5 EG W MI 352,2 349,5 60 45 - 50 47 -	
50 MI3.5 1.0G W MI 355,0 349,5 60 48 - 50 49 -	

ProjektNr.: 6061.1/2018-AS RechenlaufMr.: 21 Ingenieurbüro Kottermair GmbH Seite 4 von 6
Gewerbepark 4, 8520 Altomünster

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

So M 3.5 2.0G W M 3573 349.5 60 51 - 50 52 2														
SO M3.5	INr	Immissionsort	SW	HR	Nutzung	Z	GH	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
11 M3.6 EG S MM 352,1 349,6 60 46 - 50 48 - 31 M3.6 LOG S MM 357,7 349,6 60 49 - 50 53 3 52 M3.6 LOG O M 357,7 349,6 60 51 - 50 53 3 52 M3.6 LOG O M 357,7 349,6 60 51 - 50 52 2 52 M3.6 LOG O M 357,7 349,3 60 50 - 50 52 2 52 M3.6 EG N M 357,7 349,1 60 53 - 50 59 5 5 5 5 5 5 5 5 5 5 5 4 4 - 50 5 4 - 50								-		-				
61 M 3.8 1.OG S M 354,9 349,6 60 49 - 50 50 - 51 M 3.8 EG O M 352,1 349,3 60 50 50 53 3 52 M 3.8 L GG O M 354,9 349,3 60 50 - 50 49 - 52 M 3.8 L GG O M 354,9 349,3 60 50 - 50 52 2 32 M 3.8 L GG N M 352,7 349,1 60 53 - 50 55 5 53 M 3.8 L CG N M 354,9 349,1 60 47 - 50 49 - 53 M 3.7 L EG N M 354,9 349,1 60 53 - 50 49 - 55 M 3.7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>2</td><td></td></td<>										-			2	
51 M 36 Z OG S M 357.7 349.6 60 51 - 50 63 3 52 M 3.6 EG O M 352.1 349.3 60 50 - 50 52 2 52 M 3.6 LOG O M 354.9 349.3 60 50 - 50 52 2 52 M 3.6 EG N M 357.7 349.3 60 50 - 50 52 2 53 M 3.6 EG N M 352.1 349.1 60 53 - 50 55 55 53 M 3.6 LOG N M 351.6 349.1 60 50 - 50 54 4 4 55 M 3.7 LOG S M 351.6 349.1 60 49 - 50 50 - 55														
52 M 3.6 EG O MI 352,1 349,3 60 47 - 50 49 - 52 M 3.6 1.0G O MI 357,7 349,3 60 53 - 50 55 5 53 M 3.6 EG N MI 354,9 349,1 60 60 47 - 50 65 5 53 M 3.6 EG N MI 354,9 349,1 60 50 - 50 51 1 53 M 3.6 LOG N MI 354,9 349,1 60 50 - 50 51 1 53 M 3.7 LOG N MI 354,9 349,1 60 53 - 50 54 4 - 50 54 4 - 50 54 4 - 50 52 2 2 57 53 73														
52 M 3.6 2.0G O M 354.9 349.3 60 50 - 50 52 2 53 M 3.6 EG N M 352.1 349.1 60 47 - 50 49 - 53 M 3.6 LOG N M 354.9 349.1 60 47 - 50 49 - 53 M 3.6 LOG N M 354.9 10 50 - 50 54 4 55 M 3.7 LG S M 351.6 349.1 60 47 - 50 50 - 55 M 3.7 LOG S M 357.4 349.1 60 49 - 50 50 - 55 M 3.7 LOG S M 357.2 349.1 60 51 - 50 52 2 2 2 57														
12 M 3.6 2.0G O M 357.7 349.3 60 53 - 50 55 5 53 M 3.6 L.OG N M 354.9 349.1 60 47 - 50 49 - 53 M 3.6 L.OG N M 354.9 349.1 60 50 - 50 51 1 53 M 3.6 L.OG N M 357.7 349.1 60 53 - 50 54 4 55 M 3.7 L.OG S M 354.4 349.1 60 49 - 50 50 - 55 M 3.7 L.OG S M 357.2 349.1 60 49 - 50 50 - 50 52 2 - 50 51 1 1 - 50 57 7 - 50 54 4 -														
83 M 3.6 EG N M 382,1 349.1 60 47 - 50 49 - 33 M 3.6 1.00 N M 387,7 349.1 60 50 50 51 1 53 M 3.6 2.0G N M 357,7 349.1 60 53 - 50 54 4 55 M 3.7 1.0G S M 351.6 349.1 60 49 - 50 50 - 55 M 3.7 1.0G S M 357.4 349.1 60 51 - 50 50 - - 50 50 - - 50 55 - 50 51 1 1 - 50 51 1 1 - 50 51 1 1 - 50 57 7 7 - 50 57 7 7 -										1				
63 M 3.6 2.0G N M 349.1 60 50 - 50 51 1 53 M 3.6 2.0G N M 357.7 349.1 60 53 - 50 54 4 65 M 3.7 1.0G S M 351.6 349.1 60 49 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 - 50 50 50 - 50 50 - 50 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				_										
53 M 3.6 2.0G N M 357.7 349.1 60 53 - 50 54 4 55 M 3.7 EG S M 354.4 349.1 60 47 - 50 49 - 55 M 3.7 2.0G S M 357.2 349.1 60 49 - 50 50 - 55 M 3.7 2.0G S M 357.2 349.1 60 49 - 50 52 2 57 M 3.7 1.0G N M 351.6 348.7 60 52 - 50 51 1 57 M 3.7 1.0G N M 354.2 348.7 60 52 - 50 57 7 58 M 3.7 1.0G W M 354.4 349.0 60 47 - 50 47 - 50 49 -<														
55 M3.7 1.0G S M 354.4 349.1 60 49 - 50 50 - 55 M3.7 2.0G S M 357.2 349.1 60 49 - 50 52 2 57 M3.7 1.0G N M 354.4 346.7 60 52 - 50 54 4 57 M3.7 1.0G N M 354.2 348.7 60 55 - 50 57 7 58 M3.7 1.0G N M 351.6 349.0 60 45 - 50 57 7 58 M3.7 1.0G W M 351.4 349.0 60 47 - 50 49 - 58 M3.7 1.0G W M 357.2 349.0 60 51 - 50 47 - 50 49 -	53	MI 3.6	2.OG	N	M	357,7	349,1	60	53		50	54	4	
55 M.3.7 2.0G S M. 357.2 349.1 80 51 - 50 52 2 2 57 M.3.7 E.G N M. 351.6 346.7 60 49 - 50 51 1 57 M.3.7 1.0G N M. 357.2 348.7 60 55 - 50 54 4 57 M.3.7 2.0G N M. 357.2 348.7 60 55 - 50 57 7 7 58 M.3.7 1.0G W M. 351.6 349.0 60 47 - 50 49 - 58 M.3.7 2.0G W M. 351.6 349.0 60 47 - 50 49 - 50 49 - 50 49 - 50 48 - 50 50 50 50 50 50 50 <td>55</td> <td>MI 3.7</td> <td>EG</td> <td>s</td> <td>M</td> <td>351,6</td> <td>349,1</td> <td>60</td> <td>47</td> <td>. </td> <td>50</td> <td>49</td> <td>-</td> <td></td>	55	MI 3.7	EG	s	M	351,6	349,1	60	47	.	50	49	-	
57 M 3.7 EG N MI 351,6 348,7 60 49 - 50 51 1 57 M 3.7 1.0G N MI 354,4 348,7 60 52 - 50 54 4 57 M 3.7 2.0G N MI 357,2 348,7 60 55 - 50 57 7 58 M 3.7 1.0G W MI 351,6 349,0 60 45 - 50 47 - 58 M 3.7 1.0G W MI 351,6 349,0 60 47 - 50 49 - 58 M 3.7 1.0G W MI 357,2 349,0 60 51 - 50 49 - 58 M 3.7 2.0G S MI 351,5 349,1 60 51 - 50 52 2 59														
57 M3.7 1.0G N M 354.4 348.7 60 52 - 50 57 7 57 M3.7 2.0G N M 357.2 348.7 60 55 - 50 57 7 58 M3.7 1.0G W M 351.6 349.0 60 45 - 50 47 - 58 M3.7 2.0G W M 354.4 349.0 60 45 - 50 49 - 58 M3.7 2.0G W M 357.2 349.0 60 51 - 50 49 - 59 M3.8 EG S M 351.5 349.1 60 47 - 50 48 - 50 50 - - 50 48 - - 50 50 - - 50 50 - - 50 52			_					_						
67 M 3.7 2.0G N M 357_2 348,7 60 55 - 50 57 7 58 M 3.7 1.0G W M 351,6 349,0 60 45 - 50 47 - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 48 - - 50 50 50 50 50 - 50 48 - - 50 48 - - 50 48 - - 50 52 2 - 50 50 50 - 50 50 50 - 50 50<														
58 M3.7 EG W M 351.6 349.0 60 45 - 50 47 - 58 M3.77 1.0G W M 354.4 349.0 60 47 - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 49 - - 50 48 - 50 50 48 - 50 50 - - 50 48 - 50 50 - - 50 48 - 50 50 - - 50 48 - 50 50 - 50 50 - 50 52 <td></td>														
58 M3.7 1.0G W M 354.4 349.0 60 47 - 50 49 - 58 M3.7 2.0G W M 357.2 349.0 60 47 - 50 48 - 59 M3.8 1.0G S M 354.3 349.1 60 47 - 50 52 2 60 M3.8 1.0G S M 357.1 349.1 60 51 - 50 52 2 60 M3.8 EG O M 351.5 349.9 60 53 - 50 52 2 60 M3.8 1.0G O M 351.3 349.9 60 55 - 50 56 6 60 M3.8 1.0G O M 357.1 349.9 60 55 - 50 56 6 61 M3.8 1.0G N M 351.5 348.9 60 57 - 50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
58 M3.7 2.0G W M 357.2 349.0 60 51 - 50 52 2 59 M3.8 EG S M 351.5 349.1 60 47 - 50 48 - 59 M3.8 2.0G S M 354.3 349.1 60 51 - 50 50 - 59 M3.8 2.0G S M 357.1 349.1 60 51 - 50 52 2 60 M3.8 1.0G O M 351.5 348.9 60 53 - 50 54 4 60 M3.8 1.0G O M 354.3 348.9 60 55 - 50 56 6 61 M3.8 EG N M 351.5 348.9 60 57 - 50 56 6 61 M3.8														
59 M 3.8 EG S MI 351,5 349,1 60 47 - 50 48 - 59 M 3.8 1.0G S MI 354,3 349,1 60 49 - 50 50 - 59 M 3.8 1.0G S MI 357,1 349,1 60 51 - 50 52 2 60 M 3.8 1.0G O MI 351,5 349,9 60 53 - 50 54 4 60 M 3.8 1.0G O MI 354,3 349,9 60 55 - 50 56 6 60 M 3.8 2.0G O MI 351,5 348,9 60 57 - 50 58 8 61 M 3.8 2.0G N MI 351,5 348,6 60 52 - 50 56 6 61														
59 M 3.8 1.0G S M 354,3 349,1 60 48 - 50 50 - - 50 52 2 - 50 52 2 - 50 52 2 - 50 52 2 - 50 52 2 - 50 52 2 - 50 52 2 - 50 52 2 - 50 53 - 50 54 4 4 - 60 M3.8 1.0G 0 M 3343,3 348,9 60 55 - 50 56 6		MI3.8		S				_	47		50	48		
60 M 3.8 EG O MM 351,5 348,9 60 53 - 50 54 4 60 M 3.8 1.0G O MM 351,5 348,9 60 55 - 50 56 6 61 M 3.8 EG N M 351,5 348,6 60 52 - 50 58 8 61 M 3.8 1.0G N M 354,3 348,6 60 54 - 50 56 6 61 M 3.8 2.0G N M 354,3 348,6 60 54 - 50 56 6 61 M 3.8 2.0G N M 357,1 348,6 60 57 - 50 56 6 61 M 3.8 2.0G N M 357,1 348,6 60 57 - 50 58 8 63 M 4										.				
80 M 3.8 1.0G O M 354,3 348,9 60 55 - 50 56 6 80 M 3.8 2.0G O M 351,5 348,6 60 57 - 50 58 8 61 M 3.8 1.0G N M 351,5 348,6 60 52 - 50 53 3 61 M 3.8 1.0G N M 354,3 348,6 60 54 - 50 56 6 6 61 M 3.8 2.0G N M 354,3 348,6 60 57 - 50 56 6 6 61 M 3.8 2.0G N M 353,1 348,6 60 57 - 50 56 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 57 -<	59	MI 3.8	2.OG	S	M	357,1	349,1	60	51		50	52	2	
80 M 3 8 2,0G O MI 357,1 348,9 60 57 - 50 58 8 61 M 3.8 EG N MI 351,5 348,6 60 52 - 50 56 6 61 M 3.8 1.0G N MI 351,5 348,6 60 57 - 50 56 6 61 M 3.8 2.0G N MI 357,1 348,6 60 57 - 50 56 6 63 M 4.1 EG N MI 353,5 350,2 60 51 - 50 58 8 63 M 4.1 1.0G N MI 356,3 350,2 60 53 - 50 55 5 5 53 M 4.1 2.0G N MI 356,3 350,2 60 53 - 50 55 5 7 <td< td=""><td>60</td><td>MI 3.8</td><td>EG</td><td>0</td><td>M</td><td>351,5</td><td>348,9</td><td>60</td><td>53</td><td>- </td><td>50</td><td>54</td><td>4</td><td></td></td<>	60	MI 3.8	EG	0	M	351,5	348,9	60	53	-	50	54	4	
61 M3.8 EG N M 351.5 348.6 60 52 - 50 53 3 6 61 M3.8 1.0G N M 354.3 348.6 60 54 - 50 56 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6										-				
61 M 3.8 1.0Cg N M 354,3 348,6 60 54 - 50 56 6 63 M 4.1 EG N M 353,5 350,2 60 51 - 50 53 3 63 M 4.1 1.0Cg N M 356,3 350,2 60 53 - 50 55 5 63 M 4.1 2.0G N M 356,3 350,2 60 56 - 50 57 7 64 M 4.1 EG W M 353,5 350,2 60 48 - 50 48 - 64 M 4.1 1.0G W M 356,3 350,2 60 48 - 50 50 - 64 M 4.1 2.0G W M 356,3 350,2 60 48 - 50 50 - 64 M 4.1 2.0G W M 356,3 350,2 60 48 - 50 50 -				_				_						
61 M3.8														
63 M 4.1 EG N MI 353,5 350,2 60 51 - 50 53 3 3 3 3 63 M 4.1 1.0G N MI 356,3 350,2 60 53 - 50 55 5 5 5 5 5 5 7 7 7 64 M 4.1 EG W MI 335,5 350,2 60 46 - 50 48 - 64 MI 1.0G W MI 356,3 350,2 60 46 - 50 48 - 64 MI 1.0G W MI 356,3 350,2 60 48 - 50 48 - 64 MI 1.0G W MI 356,3 350,2 60 48 - 50 50 - 64 MI 1.0G W MI 359,1 350,2 60 48 - 50														
63 M.4.1 1.0G N M 356,3 350,2 80 53 - 50 55 5 64 M.4.1 2.0G N M 389,1 350,2 60 66 - 50 57 7 64 M.4.1 1.0G W M 386,3 380,2 60 48 - 50 48 - 64 M.4.1 1.0G W M 396,3 380,2 60 48 - 50 50 - 64 M.4.1 2.0G W M 396,1 380,2 60 50 - 50 50 -														
63 M 4.1 2.0G N MI 359,1 350,2 60 56 - 50 57 7 64 M 4.1 EG W MI 353,5 350,2 60 48 - 50 48 - 64 M 4.1 1.0G W MI 356,3 350,2 60 48 - 50 50 - 64 M 4.1 2.0G W MI 359,1 350,2 60 50 - 50 52 2														
64 M 4.1 EG W MI 353,5 350,2 60 46 - 50 48 - 64 M 4.1 1.0G W MI 356,3 350,2 60 48 - 50 50 - 64 M 4.1 2.0G W MI 356,3 350,2 60 50 - 50 50 - 50 50 - 64 M 5.2 2														
64 MI.4.1 1.OG W MI 356,3 350,2 60 48 - 50 50 - 64 MI.4.1 2.OG W MI 359,1 350,2 60 50 - 50 52 2	64	MI 4.1	EG	w	M		350,2	60	46		50	48	-	
										-			-	
	64	MI 4.1			M	359,1	350,2	60	50	-	50		2	
	65	MI 4.1	EG	S	M	353,5	350,7	60	45	.	50	47	-	
65 M4.1 1.0G S M 356,3 350,7 60 47 - 50 48 -														
65 M4.1 2.0G S M 359,1 350,7 60 48 - 50 49 -														
66 M4.1 EG O M 353,5 350,9 60 52 - 50 54 4 6 6 M4.1 1.0G O M 356,3 350,9 60 54 - 50 56 6														
66 M4.1 1.0G O M 356,3 350,9 60 54 - 50 56 6 6 6 6 M4.1 2.0G O M 359,1 350,9 60 56 - 50 57 7										- :				
00 mm-1 2203 0 mm 339,1 330,3 00 30 - 30 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-			_		,	, .			-				
107 M 4.2 1.0G N MI 356.0 350.4 00 40 - 50 51 1														
67 M 42 2.0G N M 358,8 350,4 60 53 - 50 54 4														

ProjektNr.: 6061.1/2018-AS
RechenlaufNr.: 21

Ingenieurbüro Kottermair GmbH
Seite 5 von (
Gewerbepark 4, 85250 Altonünster

SoundPLAN 7.4

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg
Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm
Beurteilungspegel: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

INr	Immissionsort	SW	HR	Nutzung	Z	GH	OW,T	LrT	LrT,diff	OW,N	LrN	LrN,diff	
					m	m	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
68	MI 4.2	EG	W	MI	353,2	350,7	60	43		50	45		
68	MI 4.2	1.0G	W	MI	356,0	350,7	60	45	-	50	47		
68	MI 4.2	2.OG	W	MI	358,8	350,7	60	49		50	50		
69	MI 4.2	EG	S	MI	353,2	350,6	60	45		50	47	-	
69	MI 4.2	1.0G	S	MI	356,0	350,6	60	46	-	50	48	-	
69	MI 4.2	2.0G	S	MI	358,8	350,6	60	47		50	48		
70	MI 4.2	EG	0	MI	353,2	350,3	60	46	-	50	47		
70	MI 4.2	1.0G	0	MI	356,0	350,3	60	48		50	50		
70	MI 4.2	2.0G	0	MI	358,8	350,3	60	52		50	53	3	
71	MI 4.3	EG	N	MI	353,7	351,0	60	44	-	50	46	-	
71	MI 4.3	1.0G	N	MI	356,5	351,0	60	47	-	50	48		
71	MI 4.3	2.0G	N	MI	359,3	351,0	60	50		50	52	2	
72	MI 4.3	EG	W	MI	353,7	351,3	60	36	-	50	38		
72	MI 4.3	1.0G	W	MI	356,5	351,3	60	37	-	50	39		
72	MI 4.3	2.0G	W	MI	359,3	351,3	60	41		50	43		
73	MI 4.3	EG	S	MI	353,7	351,2	60	42	-	50	43	-	
73	MI 4.3	1.0G	S	MI	356,5	351,2	60	44		50	46		
73	MI 4.3	2.0G	S	MI	359,3	351,2	60	45	-	50	47	-	
74	MI 4.3	EG	0	MI	353,7	350,9	60	44	-	50	46	-	
74	MI 4.3	1.0G	0	MI	356,5	350,9	60	46	-	50	48	-	
74	MI 4.3	2.OG	0	MI	359,3	350,9	60	50		50	52	2	
1													

 ProjektNr.: 6061.1/2018-AS
 Ingenieurbüro Kottermair GmbH
 Seite 6 von 6

 RechenlaufNr.: 21
 Gewerbepark 4, 85250 Altomünster

8.5. Anlage 2.5: Eingabedaten

Siehe Anlage 1.3

Anlage 2.6: Informationen zum Rechenlauf 8.6.

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan ´Strassäcker Ost 2´ in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm

Rechenlauf-Info: Beispielsbebauung MI Straßäcker Ost II - nur Straße

Projektbeschreibung

Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrs

Projekt Nr 6061.1/2018-AS

Dipl. Geogr. (Univ) Annette Schedding Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg

Beschreibung:

nur Verkehrslärm gem- Besprechung im LRA Regensburg am

Rechenlaufbeschreibung

Rechenkem: Gebäudelärmkarte

Beispielsbebauung MI Straßäcker Ost II - nur Straße

Gruppe: Laufdatei: Ergebnisnummer:

Lokale Berechnung (Anzahl Threads = 0) Berechnungsbeginn: Berechnungsende: Rechenzeit: 13.06.2018 13:57:33 13.06.2018 13:58:18 00:44:804 [ms:ms]

Anzahl Punkte: Anzahl berechneter Punkte:

Kernel Version: 15.05.2018 (32 bit)

Rechenlaufparameter

Reflexionsordnung Maximaler Reflexionsabstand zum Empfänger 200 m Maximaler Reflexionsabstand zur Quelle Suchradius dB(A) 0,100 dB Zulässige Toleranz (für einzelne Quelle):

Bodeneffektgebiete aus Straßenoberflächen erzeugen:

Richtlinien:

RI S-90 Straßen: Rechtsverkehr

Emissionsberechnung nach: Straßensteigung geglättet über eine Länge von : Berechnung mit Seitenbeugung: Nein 15 m

Minderung

Bewuchs:

Bebauung: Benutzerdefiniert Benutzerdefiniert Industriegelände Benutzerdefiniert DIN 18005 Verkehr (1987)

Ein Immissionsort in der Mitte der Fassade Reflexion der "eigenen" Fassade wird unterdrückt

Geometriedaten

6061_1_Plangebaeude max III.geo 6061_1 nur B 15 Prognose 2025.sit 12.06.2018 12:48:24 12.06.2018 17:27:22 - enthält: 4459_Geb-Lidl NN(1).geo 4909_FM-Gelaende-geplant.geo 4909_Geb-Planung 01-2014 mit NN.geo 11.06.2018 16:52:30 11.06.2018 13:48:26 12.06.2018 17:18:42 4909_KITA_Gebauede ohne IO mit NN.geo 11.06.2018 13:48:26

 4909_LS-KiTa.geo
 11.06.2018 13:48:26

 4909.LS-Getraenke.geo
 11.06.2018 13:48:26

 6061_0_Propose B15.geo
 12.06.2018 13:10:02

 6061_1_DXF-Geb-Haupt NN via 4459.geo
 11.06.2018 14:18:52

6061_1_LS-Wall_Urgelände DGM AK.geo 11.06.2018 16:05:16 6061_1_Rechengebiet BV.geo 11.06.2018 16:52:30 6061_4459_1_DXF-Geb-Neben mt NN.geo 11.06.2018 13:48:26 RDGM0099.dam 13.06.2018 11:43:22

ProjektNr.: 6061.1/2018-AS Ingenieurbüro Kottermair GmbH Seite 1 von 1 RechenlaufNr.: 20 Gewerbepark 4, 85250 Altomünster

Anlage 2.6: Informationen zum Rechenlauf 8.6.

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Rechenlauf-Info: Beispielsbebauung MI Straßäcker Ost II - nur Schiene

Projektbe schre ibung

Schalltechnische Untersuchung zum Bebauungsplan "Strassäcker Ost 2" in der Gemeinde Köfering. Landkreis Regensburg: Änderung 2018 - Verkehr 6061.1/2018-AS
Dipl. Geogr. (Univ) Annette Schedding
Firma TEGULA Massivhaus GmbH. Dietrich-Bonhoeffer-Str. 27. 93055 Regensburg Proiekttitel: Proiekt Nr. Bearbeiter: Auftraggeber:

Beschreibung: nur Verkehrslärm gem-Besprechung im LRA Regensburg am

Rechenlaufbeschreibung

Rechenkem: Titel: Gebäudelärmkarte Beispielsbebauung MI Straßäcker Ost II - nur Schiene

Grunne: Laufdatei:

Ergebnisnummer: Lokale Berechnung (Anzahl Threads = 0)

13.06.2018 13:58:19 13.06.2018 14:00:06 01:45:459 [ms:ms] Berechnungsbeginn: Berechnungsende:

Rechenzeit: Anzahl Punkte: Anzahl berechneter Punkte:

Kernel Version: 15.05.2018 (32 bit)

Rechenlaufparameter

Reflexionsordnund Maximaler Reflexionsabstand zurn Ermöfänder Maximaler Reflexionsabstand zur Quelle Suchradius Filter: Zulässide Toleranz (für einzelne Quelle): Bodeneffektoebiete aus Straßenoberflächen erzeuden: 3 200 m 50 m 5000 m dB(A) 0.100 dB

5 dB Bonus für Schiene ist aesetzt

Schall 03-2012

Richtlinien:
Schiene:
Emissionsberechnung nach:
Emissionsberechnung nach:
Bearenzung des Beugungsverlusts:
einfach/mehrfach
Berechnung mit Seitenbeugung: Ja
Minderung 20.0 dB / 25.0 dB

Minderuna Bewuchs: Bebauung: Industriegelände: DIN 18005 Verkehr (1987)

Bewertuna: Gebäudelämkarte: Ein Immissionsort in der Mitte der Fassade Reflexion der "eigenen" Fassade wird unterdrückt

Geometriedaten

6061 1 Planoebaeude max III.geo 12.06.2018 12:48:24 6061 1 nur Schiene Prognose Schall03-2012.sit 13.06.2018 11:10:48

alt:
4459 Geb-Lidl NN(11.0eo 11.06.2018 16:52:30
4909 FM-Gelaende-oeolant.oeo 11.06.2018 13:48:26
4909 Geb-Planuno 01-2014 mit NN.oeo 12.06.2018 17:18:42
4909 KITA. Gebauede ohne IO mit NN.oeo 11.06.2018 13:48:26 4909 KITA Gebauede ohne IO mit NN.qeo 11.06.2018 13:48:26
4909 LS-KITa.oeo 11.06.2018 13:48:26
4909-LS-Getraenke.oeo 11.06.2018 13:48:26
6061 1 DXF-Geb-Hauor NN via 4459.oeo 11.06.2018 14:48:52
6061 1 LS-Vail Uroelânde DGM AK.oeo 11.06.2018 16:05:16
6061 1 Prognose DB 2025 Schall 03-2012.oeo 6061 1 Rechengebiet BV.oeo 11.06.2018 16:05:16
6061 1 Rechengebiet BV.oeo 11.06.2018 16:348:26
6061 4459 1 DXF-Geb-Neben mit NN.oeo 11.06.2018 13:48:26
RDGM0099.dom

13 06 2018 13:57:14

ProjektNr.: 6061.1/2018-AS Ingenieurbüro Kottermair GmbH RechenlaufNr.: 21 Gewerbepark 4, 85250 Altomünster

Anlage 2.6: Informationen zum Rechenlauf 8.6.

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Rechenlauf-Info: Beispielsbebauung MI Straßäcker Ost II - Verkehr gesamt

Projektbe schre ibung

Schalltechnische Untersuchung zum Bebauungsplan "Strassäcker Ost 2" in der Gemeinde Köfering. Landkreis Regensburg: Änderung 2018 - Verkehr 6061.1/2018-AS
Dipl. Geogr. (Univ) Annette Schedding
Firma TEGULA Massivhaus GmbH. Dietrich-Bonhoeffer-Str. 27. 93055 Regensburg Proiekttitel: Proiekt Nr. Bearbeiter: Auftraggeber:

Beschreibung: nur Verkehrslärm gem-Besprechung im LRA Regensburg am

Rechenlaufbeschreibung

Rechenkem: Titel: Gebäudelärmkarte Beispielsbebauung MI Straßäcker Ost II - Verkehr gesamt

Grunne: Laufdatei:

Ergebnisnummer: Lokale Berechnung (Anzahl Threads = 0) 13.06.2018 14:00:06 13.06.2018 14:02:33 02:25:503 [ms:ms] 66 Berechnungsbeginn: Berechnungsende: Rechenzeit: Anzahl Punkte:

Anzahl berechneter Punkte:

Kernel Version: 15.05.2018 (32 bit)

Rechenlaufparameter

Reflexionsordnund Maximaler Reflexionsabstand zurn Ermöfänder Maximaler Reflexionsabstand zur Quelle Suchradius Filter: Zulässide Toleranz (für einzelne Quelle): Bodeneffektoebiete aus Straßenoberflächen erzeuden: 3 200 m 50 m 5000 m dB(A) 0.100 dB

5 dB Bonus für Schiene ist aesetzt

RLS-90

S dB burne.

Richtlinien:
Straßen:
Rechtsverkehr
Errissionsberechnung nach:
Berechnung mit Seitenbeugung: Nein
Minderung
Bewuchs:
Bebauung:
Industriegelände:

20.0 dB / 25.0 dB

einfach mehfach einfach mehfach Berechnung mit Seitenbeugung: Ja Minderung Bewuchs: Bebauung: Industriegelände: Keine Dämpfung Keine Dämpfung Keine Dämpfung

DIN 18005 Verkehr (1987) Bewertung:

Ein Immissionsort in der Mitte der Fassade Reflexion der "eigenen" Fassade wird unterdrückt

Geometriedaten

6061 1 Plancebaeude max III.geo 12.06.2018 12:48:24 6061 1 Verkehr gesamt Prognose 2025.sit 13.06.2018 13:57:14

4459 Geb-Lidl NN(1).geo 11.06.2018 16:52:30

49094-LS-Getraenke.qeo 11.06.2018 13:48:26 6061 0 Proanose B15.oeo 12.06.2018 13:10:02 6061 1 DGM2-mi BV.oeo 12.06.2018 13:10:02 6061 1 DGM2-mi BV.oeo 11.06.2018 11:40:48 6061 1 DXF-Geb-Haunt NN via 4459.qeo 11.06.2018 14:18:52 6061 1 LS-Wall Urqelände DGM AK.qeo 11.06.2018 16:05:16 6061 1 Proanose DB 2025 Schall 03-2012.qeo 6061 4459 1 DXF-Geb-Neben mit NN.qeo 11.06.2018 16:52:30 6061 4459 1 DXF-Geb-Neben mit NN.qeo 11.06.2018 13:48:26

13 06 2018 13:57:14

ProjektNr.: 6061.1/2018-AS Ingenieurbüro Kottermair GmbH RechenlaufNr.: 22 Gewerbepark 4, 85250 Altomünster

9. Anlage 3: Angaben zum Schallschutz gem. DIN 4109/11.89

9.1. Anlage 3.1: Tabellarischer Ausdruck Lärmpegelbereiche Verkehrslärm "gesamt" gem. DIN 4109/11.89

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Lärmpegelbereich gem. DIN 4109/11.89

	10000		1010000	N. Samuel	Straßen			5	chiene	nverkel	ır	румени	Gew	erbe	**************************************	Sun	nme		Lärm-
Immissionsort	Etage	Nutz.	HR	LrT	LrN	LaT	LaN	LrT	LrN	177	LaN	LrT	LrN	LaT	LaN	LaT	LaN	La	pegel-
NAT 4 - 4L	-	NAT			dB(A)]		dB(A)]		dB(A)]		dB(A)]		dB(A)]		dB(A)]		JB(A)]	[dB(A)]	bereic
MI 1a-1b	EG	MI	N	46 46	39 40	49	0	60	61	63	0	0,0	0,0	0,0	0,0	63,2	0,0	64	III
MI 1a-1b MI 1a-1b	1.OG EG	MI	W	51	44	54	0	53	62 55	56	0	0,0	0,0	0,0	0,0	63,2 58,1	0,0	59	II
MI 1a-1b	1.0G	MI	W	52	46	55	0	51	52	54	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II
MI 1a-1b	EG	MI	S	47	41	50	0	47	49	50	0	0,0	0,0	0,0	0,0	53,0	0,0	53	I
MI 1a-1b	1.0G	MI	S	50	44	53	0	51	53	54	ō	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 1a-1b	EG	MI	0	46	40	49	0	58	60	61	0	0,0	0,0	0,0	0,0	61,3	0,0	62	III
MI 1a-1b	1.0G	MI	0	45	39	48	0	60	62	63	0	0,0	0,0	0,0	0,0	63,1	0,0	64	III
MI 2	EG	MI	N	49	43	52	0	53	54	56	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II
MI 2	1.0G	MI	N	50	44	53	0	53	54	56	0	0,0	0,0	0,0	0,0	57,8	0,0	58	II
MI 2	2.OG	MI	N	50	44	53	0	55	57	58	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II
MI 2	EG	MI	0	46	40	49	0	55	57	58	0	0,0	0,0	0,0	0,0	58,5	0,0	59	II
MI 2	1.0G	MI	0	46	40	49	0	56	57	59	0	0,0	0,0	0,0	0,0	59,4	0,0	60	II
MI 2	2.0G	MI	0	44	38	47	0	57	59	60	0	0,0	0,0	0,0	0,0	60,2	0,0	61	III
MI 2	EG	MI	N	52	46	55	0	54	55	57	0	0,0	0,0	0,0	0,0	59,1	0,0	60	II
MI 2 MI 2	1.0G 2.0G	MI	N	53 53	47	56 56	0	54 56	56 57	59	0	0,0	0,0	0,0	0,0	59,5	0,0	60	III
MI 2	EG	MI	W	55	49	58	0	49	51	52	0	0,0	0,0	0,0	0,0	59,0	0,0	59	II
MI 2	1.0G	MI	W	55	49	58	0	50	51	53	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II
MI 2	2.0G	MI	W	56	50	59	0	50	51	53	0	0,0	0,0	0,0	0,0	60,0	0,0	60	II
MI 2	EG	MI	N	54	48	57	0	54	55	57	Ö	0,0	0,0	0,0	0,0	60,0	0,0	60	II
MI 2	1.0G	MI	N	55	49	58	0	54	56	57	0	0,0	0,0	0,0	0,0	60,5	0,0	61	III
MI 2	2.OG	MI	N	56	50	59	0	55	56	58	0	0,0	0,0	0,0	0,0	61,5	0,0	62	III
MI 2	EG	MI	W	58	51	61	0	45	47	48	0	0,0	0,0	0,0	0,0	61,2	0,0	62	III
MI 2	1.0G	MI	W	63	56	66	0	46	48	49	0	0,0	0,0	0,0	0,0	66,1	0,0	67	IV
MI 2	2.OG	MI	W	63	57	66	0	46	48	49	0	0,0	0,0	0,0	0,0	66,1	0,0	67	IV
MI 2	EG	MI	S	58	52	61	0	36	38	39	0	0,0	0,0	0,0	0,0	61,0	0,0	61	Ш
MI 2	1.0G	MI	S	64	58	67	0	37	38	40	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV
MI 2	2.OG	MI	S	64	58	67	0	37	39	40	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV
MI 2	EG	MI	W	59	52	62	0	39	41	42	0	0,0	0,0	0,0	0,0	62,0	0,0	62	III
MI 2 MI 2	1.0G 2.0G	MI	W	64	58 58	67	0	40 39	41	43	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV IV
MI 2	EG	MI	S	55	48	58	0	38	40	41	0	0,0	0,0	0,0	0,0	58,1	0,0	59	II
MI 2	1.0G	MI	S	62	56	65	0	40	41	43	0	0,0	0,0	0,0	0,0	65,0	0,0	65	III
MI 2	2.OG	MI	S	63	57	66	0	44	45	47	0	0,0	0,0	0,0	0,0	66,1	0,0	67	IV
MI 2	EG	MI	W	53	47	56	0	37	38	40	Ö	0,0	0,0	0,0	0,0	56,1	0,0	57	II
MI 2	1.0G	MI	W	58	52	61	0	37	39	40	0	0,0	0,0	0,0	0,0	61,0	0,0	61	Ш
MI 2	2.0G	MI	W	63	57	66	0	41	42	44	0	0,0	0,0	0,0	0,0	66,0	0,0	66	IV
MI 2	EG	MI	S	50	43	53	0	39	41	42	0	0,0	0,0	0,0	0,0	53,3	0,0	54	I
MI 2	1.0G	MI	S	53	47	56	0	41	43	44	0	0,0	0,0	0,0	0,0	56,3	0,0	57	II
MI 2	2.OG	MI	S	59	53	62	0	47	49	50	0	0,0	0,0	0,0	0,0	62,3	0,0	63	III
MI 2	EG	MI	0	46	40	49	0	40	41	43	0	0,0	0,0	0,0	0,0	50,0	0,0	50	I
MI 2	1.0G	MI	0	49	42	52	0	42	43	45	0	0,0	0,0	0,0	0,0	52,8	0,0	53	I
MI 2	2.0G	MI	0	53	46	56	0	47	49	50	0	0,0	0,0	0,0	0,0	57,0	0,0	57	II
MI 2	EG	MI	S	47	41	50	0	39	40	42	0	0,0	0,0	0,0	0,0	50,6	0,0	51	I
MI 2	1.0G	MI	S	49	43	52	0	41	43	44	0	0,0	0,0	0,0	0,0	52,6	0,0	53	I
MI 2 MI 2	2.OG EG	MI	S	53 48	47	56 51	0	47 38	48	50 41	0	0,0	0,0	0,0	0,0	57,0	0,0	57	I
MI 2	1.0G	MI	W	50	44	53	0	40	42	43	0	0,0	0,0	0,0	0,0	53,4	0,0	54	I
MI 2	2.0G	MI	W	53	46	56	0	46	47	49	0	0,0	0,0	0,0	0,0	56,8	0,0	57	II
MI 2	EG	MI	N	49	43	52	0	39	40	42	0	0,0	0,0	0,0	0,0	52,4	0,0	53	I
MI 2	1.0G	MI	N	52	46	55	0	41	42	44	Ö	0,0	0,0	0,0	0,0	55,3	0,0	56	II
MI 2	2.OG	MI	N	55	49	58	0	47	48	50	0	0,0	0,0	0,0	0,0	58,6	0,0	59	II
MI 2	EG	MI	W	55	49	58	0	38	39	41	0	0,0	0,0	0,0	0,0	58,1	0,0	59	II
MI 2	1.0G	MI	W	64	58	67	0	39	40	42	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV
MI 2	2.0G	MI	W	64	58	67	0	42	44	45	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV
MI 2	EG	MI	S	55	49	58	0	36	38	39	0	0,0	0,0	0,0	0,0	58,1	0,0	59	II
MI 2	1.0G	MI	S	66	60	69	0	36	38	39	0	0,0	0,0	0,0	0,0	69,0	0,0	69	IV
MI 2	2.OG	MI	S	66	60	69	0	37	38	40	0	0,0	0,0	0,0	0,0	69,0	0,0	69	IV
MI 2	EG	MI	W	56	50	59	0	38	39	41	0	0,0	0,0	0,0	0,0	59,1	0,0	60	II
MI 2	1.0G	MI	W	65	59	68	0	38	40	41	0	0,0	0,0	0,0	0,0	68,0	0,0	68	IV
MI 2	2.0G	MI	W	66	59	69	0	38	40	41	0	0,0	0,0	0,0	0,0	69,0	0,0	69	IV
MI 2	EG 1.0G	MI	S	55	48	58	0	38	40	41	0	0,0	0,0	0,0	0,0	58,1	0,0	59	III
MI 2 MI 2	1.0G 2.0G	MI	S	60	54	63 67	0	40	41	43	0	0,0	0,0	0,0	0,0	63,0	0,0	63	IV
MI 2	EG EG	MI	W	53	58 47	56	0	36	38	39	0	0,0	0,0	0,0	0,0	67,0 56,1	0,0	57	II
MI 2	1.0G	MI	W	58	52	61	0	36	38	39	0	0,0	0,0	0,0	0,0	61,0	0,0	61	III
114 4	1 1.00	1-11	- **	30	JZ .	Ų1		- 30	- 50	33	- 0	0,0	1 0,0	0,0	0,0	01,0	0,0	- 01	411

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: erg.020;erg.021

SoundPLAN 7.4

Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünster Seite 1 von 4

9.1. Anlage 3.1: Tabellarischer Ausdruck Lärmpegelbereiche Verkehrslärm "gesamt" gem. DIN 4109/11.89

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Lärmpegelbereich gem. DIN 4109/11.89

					Straßen	verkeh	r	5	Schiene	nverkel	nr	100000000	Gew	erbe		Sun	nme		Lärm-
Immissionsort	Etage	Nutz.	HR	LrT	LrN	LaT	LaN	LrT	LrN	LaT		LrT	LrN	LaT	SECOND SEC	LaT	LaN	La	pegel-
	12.00	147	111		IB(A)]		dB(A)]		dB(A)]		dB(A)]		dB(A)]		dB(A)]		dB(A)]	[dB(A)]	bereich
MI 2	2.0G	MI	W	64	58	67	0	37	39	40	0	0,0	0,0	0,0	0,0	67,0	0,0	67	IV
MI 2 MI 2	EG 1.OG	MI	S	50 53	44	53 56	0	43	45	46	0	0,0	0,0	0,0	0,0	53,8 56,8	0,0	54	I
MI 2	2.0G	MI	S	57	51	60	0	49	51	52	0	0,0	0,0	0.0	0,0	60,6	0.0	61	III
MI 2	EG	MI	0	50	44	53	0	46	47	49	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 2	1.0G	MI	0	50	44	53	0	49	51	52	0	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 2	2.0G	MI	ō	51	45	54	0	54	55	57	Ö	0,0	0,0	0,0	0,0	58,8	0,0	59	II
MI 2	EG	MI	S	50	44	53	0	45	46	48	0	0,0	0,0	0,0	0,0	54,2	0,0	55	I
MI 2	1.0G	MI	S	51	45	54	0	48	49	51	0	0,0	0,0	0,0	0,0	55,8	0,0	56	II
MI 2	2.OG	MI	S	53	47	56	0	51	53	54	0	0,0	0,0	0,0	0,0	58,1	0,0	59	II
MI 2	EG	MI	0	50	43	53	0	47	49	50	0	0,0	0,0	0,0	0,0	54,8	0,0	55	I
MI 2	1.0G	MI	0	51	44	54	0	50	52	53	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 2	2.OG	MI	0	50	44	53	0	55	56	58	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II
MI 2	EG	MI	N	47	41	50	0	48	49	51	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 2	1.0G	MI	N	49	42	52	0	50	52	53	0	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 2	2.OG	MI	N	41	35	44	0	56	57	59	0	0,0	0,0	0,0	0,0	59,1	0,0	60	II
MI 2	EG	MI	0	49	43	52	0	47	49	50	0	0,0	0,0	0,0	0,0	54,1	0,0	55	I
MI 2	1.0G	MI	0	50	44	53	0	50	52	53	0	0,0	0,0	0,0	0,0	56,0	0,0	56	II
MI 2	2.0G	MI	0	50 46	43	53 49	0	55	57	58 54	0	0,0	0,0	0,0	0,0	59,2	0,0	60 56	II
MI 3.1 MI 3.1	EG 1.OG	MI	N N	47	41	50	0	53	53 55	56	0	0,0	0,0	0,0	0,0	55,2 57,0	0,0	57	II
MI 3.1	2.0G	MI	N	49	43	52	0	56	57	59	0	0.0	0,0	0,0	0,0	59,8	0,0	60	II
MI 3.1	EG	MI	S	46	40	49	0	50	51	53	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.1	1.0G	MI	S	47	41	50	Ō	51	52	54	ŏ	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 3.1	2.OG	MI	S	49	43	52	0	52	54	55	0	0,0	0,0	0,0	0,0	56,8	0,0	57	II
MI 3.1	EG	MI	0	48	42	51	0	54	55	57	0	0,0	0,0	0,0	0,0	58,0	0,0	58	II
MI 3.1	1.0G	MI	0	49	42	52	0	55	57	58	0	0,0	0,0	0,0	0,0	59,0	0,0	59	II
MI 3.1	2.OG	MI	0	49	43	52	0	57	59	60	0	0,0	0,0	0,0	0,0	60,6	0,0	61	III
MI 3.2	EG	MI	N	47	41	50	0	49	50	52	0	0,0	0,0	0,0	0,0	54,1	0,0	55	I
MI 3.2	1.0G	MI	N	48	42	51	0	52	54	55	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 3.2	2.OG	MI	N	50	44	53	0	54	56	57	0	0,0	0,0	0,0	0,0	58,5	0,0	59	II
MI 3.2	EG	MI	W	47	41	50	0	46	48	49	0	0,0	0,0	0,0	0,0	52,5	0,0	53	I
MI 3.2	1.0G	MI	W	49	42	52	0	48	50	51	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.2	2.0G	MI	W	50	44	53	0	51	53	54	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 3.2 MI 3.2	EG 1.OG	MI	S	46	39 41	49 50	0	49 51	51 52	52 54	0	0,0	0,0	0,0	0,0	53,8	0,0	54	II
MI 3.2	2.0G	MI	S	49	43	52	0	53	55	56	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II
MI 3.3	EG	MI	N	48	42	51	0	48	50	51	0	0,0	0,0	0,0	0,0	54,0	0,0	54	I
MI 3.3	1.0G	MI	N	49	43	52	0	50	52	53	0	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 3.3	2.OG	MI	N	51	44	54	0	53	54	56	ō	0,0	0,0	0,0	0,0	58,1	0,0	59	II
MI 3.3	EG	MI	S	44	38	47	0	47	49	50	Ō	0,0	0,0	0,0	0,0	51,8	0,0	52	I
MI 3.3	1.0G	MI	S	46	40	49	0	49	50	52	0	0,0	0,0	0,0	0,0	53,8	0,0	54	I
MI 3.3	2.OG	MI	S	48	42	51	0	51	53	54	0	0,0	0,0	0,0	0,0	55,8	0,0	56	II
MI 3.3	EG	MI	0	47	41	50	0	48	50	51	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.3	1.0G	MI	0	49	42	52	0	51	53	54	0	0,0	0,0	0,0	0,0	56,1	0,0	57	II
MI 3.3	2.OG	MI	0	50	44	53	0	53	55	56	0	0,0	0,0	0,0	0,0	57,8	0,0	58	II
MI 3.4	EG	MI	N	48	42	51	0	48	50	51	0	0,0	0,0	0,0	0,0	54,0	0,0	54	I
MI 3.4	1.0G	MI	N	49	43	52	0	50	52	53	0	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 3.4	2.OG	MI	N	51	45	54	0	52	54	55	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II
MI 3.4	EG	MI	W	48	42	51	0	46	48	49	0	0,0	0,0	0,0	0,0	53,1	0,0	54	I
MI 3.4	1.0G	MI	W	49	43	52	0	48	49	51	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.4 MI 3.4	2.0G	MI	S	50 44	44 38	53 47	0	50 47	51	53	0	0,0	0,0	0,0	0,0	56,0	0,0	56	I
MI 3.4 MI 3.4	EG 1.OG	MI	S	46	40	49	0	48	48 50	51	0	0,0	0,0	0,0	0,0	51,8	0,0	52 54	I
MI 3.4	2.0G	MI	\$	48	40	51	0	51	52	54	0	0,0	0,0	0,0	0,0	55,8	0,0	56	II
MI 3.5	EG	MI	S	50	44	53	0	45	47	48	0	0,0	0,0	0,0	0,0	54,2	0,0	55	I
MI 3.5	1.0G	MI	S	51	45	54	0	48	49	51	0	0,0	0,0	0,0	0,0	55,8	0,0	56	II
MI 3.5	2.0G	MI	S	52	46	55	0	51	52	54	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II
MI 3.5	EG	MI	N	46	40	49	0	48	49	51	0	0,0	0,0	0,0	0,0	53,1	0,0	54	I
MI 3.5	1.0G	MI	N	48	41	51	0	50	52	53	0	0,0	0,0	0,0	0,0	55,1	0,0	56	II
MI 3.5	2.OG	MI	N	48	41	51	0	53	55	56	0	0,0	0,0	0,0	0,0	57,2	0,0	58	II
MI 3.5	EG	MI	W	48	42	51	0	45	47	48	0	0,0	0,0	0,0	0,0	52,8	0,0	53	I
MI 3.5	1.0G	MI	W	49	43	52	0	48	49	51	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.5	2.0G	MI	W	50	44	53	0	51	52	54	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 3.6	EG	MI	S	50	44	53	0	46	48	49	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.6	1.0G	MI	S	51	45	54	0	49	50	52	0	0,0	0,0	0,0	0,0	56,1	0,0	57	II
MI 3.6	2.OG	MI	S	52	45	55	0	51	53	54	0	0,0	0,0	0,0	0,0	57,5	0,0	58	II

ProjektNr.: 6061.1/2018-AS RechenlaufNr.: erg.020;erg.021 Ingenieurbüro Kottermair GmbH Gewerbepark 4, 85250 Altomünste Seite 2 von 4

SoundPLAN 7.4

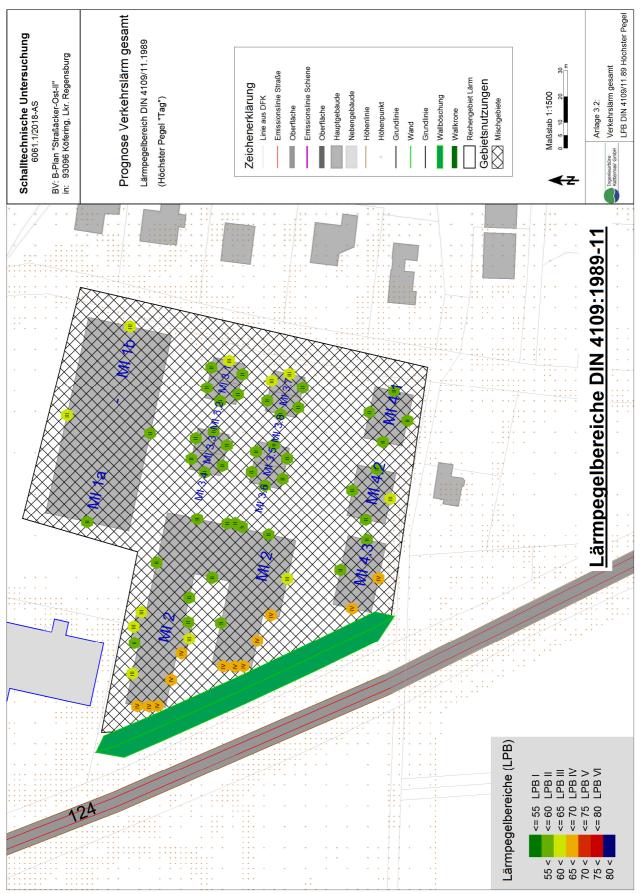
9.1. Anlage 3.1: Tabellarischer Ausdruck Lärmpegelbereiche Verkehrslärm "gesamt" gem. DIN 4109/11.89

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Lärmpegelbereich gem. DIN 4109/11.89

1	1			Straßenverkehr				Schienenverkehr				Gewerbe				Summe			Lärm-
Immissionsort	Etage	Nutz.	HR	LrT	LrN	LaT	LaN	LrT	LrN	LaT	LaN	LrT			LaN	LaT	2.50	La	pegel-
			1000	1000000	B(A)]		B(A)]	200	dB(A)]		dB(A)]	0.41	dB(A)]	1000	dB(A)]	599	dB(A)]	[dB(A)	bereic
MI 3.6	EG	MI	0	48	42	51	0	47	49	50	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.6	1.0G	MI	ō	50	43	53	0	50	52	53	0	0,0	0,0	0.0	0,0	56,0	0,0	56	II
MI 3.6	2.0G	MI	0	50	44	53	0	53	55	56	0	0,0	0,0	0,0	0,0	57,8	0,0	58	II
MI 3.6	EG	MI	N	45	39	48	0	47	49	50	0	0,0	0,0	0,0	0,0	52,1	0.0	53	I
MI 3.6	1.0G	MI	N	47	41	50	0	50	51	53	0	0,0	0,0	0,0	0,0	54,8	0,0	55	I
MI 3.6	2.OG	MI	N	47	41	50	0	53	54	56	0	0,0	0,0	0,0	0,0	57,0	0,0	57	II
MI 3.7	EG	MI	S	48	42	51	0	47	49	50	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.7	1.0G	MI	S	49	43	52	0	49	50	52	0	0,0	0,0	0,0	0,0	55,0	0,0	55	I
MI 3.7	2.OG	MI	S	50	44	53	0	51	52	54	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 3.7	EG	MI	N	45	39	48	0	49	51	52	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.7	1.0G	MI	N	47	41	50	0	52	54	55	0	0,0	0,0	0,0	0,0	56,2	0,0	57	II
MI 3.7	2.OG	MI	N	49	43	52	0	55	57	58	0	0,0	0,0	0,0	0,0	59,0	0,0	59	II
MI 3.7	EG	MI	W	49	43	52	0	45	47	48	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.7	1.0G	MI	W	50	44	53	0	47	49	50	0	0,0	0,0	0,0	0,0	54,8	0,0	55	I
MI 3.7	2.OG	MI	W	51	45	54	0	51	52	54	0	0,0	0,0	0,0	0,0	57,0	0,0	57	II
MI 3.8	EG	MI	S	48	42	51	0	47	48	50	0	0,0	0,0	0,0	0,0	53,5	0,0	54	I
MI 3.8	1.0G	MI	S	49	43	52	0	48	50	51	0	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 3.8	2.OG	MI	S	50	44	53	0	51	52	54	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 3.8	EG 1.0G	MI	0	48	42	51	0	53	54	56	0	0,0	0,0	0,0	0,0	57,2	0,0	58	-
MI 3.8 MI 3.8	1.0G 2.0G	MI	0	49	42	52 52	0	55 57	56 58	58 60	0	0,0	0,0	0,0	0,0	59,0	0,0	59 61	III
MI 3.8	EG EG	MI	N	45	39	48	0	52	53	55	0	0,0	0,0	0,0	0,0	55,8	0,0	56	II
MI 3.8	1.0G	MI	N	47	41	50	0	54	56	57	0	0,0	0,0	0,0	0,0	57,8	0,0	58	II
MI 3.8	2.0G	MI	N	48	42	51	0	57	58	60	0	0,0	0,0	0,0	0,0	60,5	0,0	61	III
MI 4.1	EG	MI	N	47	41	50	0	51	53	54	0	0,0	0,0	0,0	0,0	55,5	0,0	56	II
MI 4.1	1.0G	MI	N	48	42	51	0	53	55	56	0	0,0	0,0	0,0	0,0	57,2	0,0	58	II
MI 4.1	2.OG	MI	N	47	41	50	0	56	57	59	0	0,0	0,0	0,0	0,0	59,5	0,0	60	II
MI 4.1	EG	MI	W	53	47	56	0	46	48	49	0	0,0	0,0	0,0	0,0	56,8	0,0	57	II
MI 4.1	1.0G	MI	W	54	48	57	0	48	50	51	0	0,0	0,0	0,0	0,0	58,0	0,0	58	II
MI 4.1	2.0G	MI	W	55	49	58	0	50	52	53	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II
MI 4.1	EG	MI	S	55	49	58	0	45	47	48	0	0,0	0,0	0,0	0,0	58,4	0,0	59	II
MI 4.1	1.0G	MI	S	56	49	59	0	47	48	50	0	0,0	0,0	0,0	0,0	59,5	0,0	60	II
MI 4.1	2.0G	MI	S	56	50	59	0	48	49	51	0	0,0	0,0	0,0	0,0	59,6	0,0	60	II
MI 4.1	EG	MI	0	50	43	53	0	52	54	55	0	0,0	0,0	0,0	0,0	57,1	0,0	58	II
MI 4.1	1.0G	MI	0	50	43	53	0	54	56	57	0	0,0	0,0	0,0	0,0	58,5	0,0	59	II
MI 4.1	2.OG	MI	0	48	42	51	0	56	57	59	0	0,0	0,0	0,0	0,0	59,6	0,0	60	II
MI 4.2	EG	MI	N	48	41	51	0	46	48	49	0	0,0	0,0	0,0	0,0	53,1	0,0	54	I
MI 4.2	1.0G	MI	N	49	43	52	0	49	51	52	0	0,0	0,0	0,0	0,0	55,0	0,0	55	I
MI 4.2	2.0G	MI	N	50	44	53	0	53	54	56	0	0,0	0,0	0,0	0,0	57,8	0,0	58	II
MI 4.2	EG	MI	W	54	48	57	0	43 45	45	46	0	0,0	0,0	0,0	0,0	57,3	0,0	58	II
MI 4.2 MI 4.2	1.0G 2.0G	MI	W	55 56	49 50	58 59	0	45	50	48 52	0	0,0	0,0	0,0	0,0	58,4 59,8	0,0	59 60	II
MI 4.2	EG EG	MI	S	57	51	60	0	45	47	48	0	0,0	0,0	0,0	0,0	60,3	0,0	61	Ш
MI 4.2	1.0G	MI	S	58	52	61	0	46	48	49	0	0,0	0,0	0,0	0,0	61,3	0,0	62	III
MI 4.2	2.0G	MI	S	59	53	62	0	47	48	50	0	0,0	0,0	0,0	0,0	62,3	0,0	63	Ш
MI 4.2	EG	MI	0	50	44	53	0	46	47	49	Ö	0,0	0,0	0,0	0,0	54,5	0,0	55	I
MI 4.2	1.0G	MI	ō	52	45	55	0	48	50	51	0	0,0	0,0	0,0	0,0	56,5	0,0	57	II
MI 4.2	2.0G	MI	ŏ	53	47	56	0	52	53	55	Ö	0,0	0,0	0,0	0,0	58,5	0,0	59	II
MI 4.3	EG	MI	N	49	43	52	0	44	46	47	0	0,0	0,0	0,0	0,0	53,2	0,0	54	I
MI 4.3	1.0G	MI	N	52	46	55	0	47	48	50	0	0,0	0,0	0,0	0,0	56,2	0,0	57	II
MI 4.3	2.OG	MI	N	55	49	58	0	50	52	53	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II
MI 4.3	EG	MI	W	56	50	59	0	36	38	39	0	0,0	0,0	0,0	0,0	59,0	0,0	59	II
MI 4.3	1.OG	MI	W	63	56	66	0	37	39	40	0	0,0	0,0	0,0	0,0	66,0	0,0	66	IV
MI 4.3	2.0G	MI	W	65	59	68	0	41	43	44	0	0,0	0,0	0,0	0,0	68,0	0,0	68	IV
MI 4.3	EG	MI	S	60	54	63	0	42	43	45	0	0,0	0,0	0,0	0,0	63,1	0,0	64	III
MI 4.3	1.0G	MI	S	62	56	65	0	44	46	47	0	0,0	0,0	0,0	0,0	65,1	0,0	66	IV
MI 4.3	2.OG	MI	S	64	57	67	0	45	47	48	0	0,0	0,0	0,0	0,0	67,1	0,0	68	IV
MI 4.3	EG	MI	0	54	48	57	0	44	46	47	0	0,0	0,0	0,0	0,0	57,4	0,0	58	II
MI 4.3	1.0G	MI	0	55	49	58	0	46	48	49	0	0,0	0,0	0,0	0,0	58,5	0,0	59	II
MI 4.3	2.OG	MI	0	55	49	58	0	50	52	53	0	0,0	0,0	0,0	0,0	59,2	0,0	60	II

ProjektNr.: 6061.1/2018-AS
RechenlaufNr.:
erg.020;erg.021

Ingenieurbüro Kottermair GmbH
Gewerbepark 4, 85250 Altomünster


erg.020;erg.021

9.1. Anlage 3.1: Tabellarischer Ausdruck Lärmpegelbereiche Verkehrslärm "gesamt" gem. DIN 4109/11.89

Firma TEGULA Massivhaus GmbH, Dietrich-Bonhoeffer-Str. 27, 93055 Regensburg Schalltechnische Untersuchung zum Bebauungsplan 'Strassäcker Ost 2' in der Gemeinde Köfering, Landkreis Regensburg; Änderung 2018 - Verkehrslärm Lärmpegelbereich gem. DIN 4109/11.89

Etage	Beschreibung	
	Stockwerk	
Nutz.	Gebietschrarakter	
HR	Himmelsrichtung der Gebäudeseite	
Straßenverkehr	Beurteilungsbegel Strasse Tag bzw. Nacht (gerundet nach RLS-90)	
Schienenverkehr	Beurteilungsbegel Schiene Tag bzw. Nacht (gerundet nach RLS-90)	
Gewerbe	Beurteilungsbegel Gewerbe Tag bzw. Nacht	
Summe	Maßgeblicher Außenlärmpegel Summe Tag bzw. Nacht	
La	Maßgeblicher Außenlärmpegel gesamt	

9.2. Anlage 3.2: Ergebnisgrafik Lärmpegelbereiche Verkehrslärm "gesamt" gem. DIN 4109/11.89 (höchster Pegel)

